Mostrar el registro sencillo del ítem
dc.contributor.author | Julve González, Sofia | |
dc.contributor.author | Manrique, Jose A. | |
dc.contributor.author | manrique martinez, jose antonio | |
dc.contributor.author | Veneranda, Marco | |
dc.contributor.author | Reyes Rodríguez, Iván | |
dc.contributor.author | Pascual Sánchez, Elena | |
dc.contributor.author | Sanz Arranz, Aurelio | |
dc.contributor.author | Konstantinidis, Menelaos | |
dc.contributor.author | Lalla, Emmanuel Alexis | |
dc.contributor.author | Charro Huerga, María Elena | |
dc.contributor.author | Rodríguez Gutiez, Eduardo | |
dc.contributor.author | López Rodríguez, José M. | |
dc.contributor.author | Sanz Requena, José Francisco | |
dc.contributor.author | Delgado Iglesias, Jaime | |
dc.contributor.author | González, Manuel A . | |
dc.contributor.author | Rull Pérez, Fernando | |
dc.contributor.author | López Reyes, Guillermo | |
dc.date.accessioned | 2024-01-11T13:41:56Z | |
dc.date.available | 2024-01-11T13:41:56Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Journal of Raman Spectroscopy, 2023, vol. 54, n. 11, p. 1353-1366 | es |
dc.identifier.issn | 0377-0486 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/64457 | |
dc.description | Producción Científica | es |
dc.description.abstract | The combined analysis of geological targets by complementary spectroscopic techniques could enhance the characterization of the mineral phases found on Mars. This is indeed the case with the SuperCam instrument onboard the Perseverance rover. In this framework, the present study seeks to evaluate and compare multiple machine learning techniques for the characterization of carbonate minerals based on Raman-LIBS (Laser-Induced Breakdown Spectroscopy) spectroscopic data. To do so, a Ca-Mg prediction curve was created by mixing hydromagnesite and calcite at different concentration ratios. After their characterization by Raman and LIBS spectroscopy, different multivariable machine learning (Gaussian process regression, support vector machines, ensembles of trees, and artificial neural networks) were used to predict the concentration ratio of each sample from their respective datasets. The results obtained by separately analyzing Raman and LIBS data were then compared to those obtained by combining them. By comparing their performance, this work demonstrates that mineral discrimination based on Gaussian and ensemble methods optimized the combine of Raman-LIBS dataset outperformed those ensured by Raman and LIBS data alone. This demonstrated that the fusion of data combination and machine learning is a promising approach to optimize the analysis of spectroscopic data returned from Mars. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Wiley | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Data combination | es |
dc.subject.classification | LIBS | es |
dc.subject.classification | Machine learning | es |
dc.subject.classification | PCA | es |
dc.subject.classification | Raman | es |
dc.title | Machine learning methods applied to combined Raman and LIBS spectra: Implications for mineral discrimination in planetary missions | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The Author(s) | es |
dc.identifier.doi | 10.1002/jrs.6611 | es |
dc.relation.publisherversion | https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.6611 | es |
dc.identifier.publicationfirstpage | 1353 | es |
dc.identifier.publicationissue | 11 | es |
dc.identifier.publicationlastpage | 1366 | es |
dc.identifier.publicationtitle | Journal of Raman Spectroscopy | es |
dc.identifier.publicationvolume | 54 | es |
dc.peerreviewed | SI | es |
dc.description.project | Agencia Estatal de Investigación, grant (PID2022-142490OB-C32) | es |
dc.description.project | Ministerio de Economía y Competitividad (MINECO),Grant/Award Number (RDE2018-102600-T) | es |
dc.identifier.essn | 1097-4555 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 25 Ciencias de la Tierra y del Espacio | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional