Mostrar el registro sencillo del ítem

dc.contributor.authorJulve González, Sofia
dc.contributor.authorManrique, Jose A.
dc.contributor.authormanrique martinez, jose antonio
dc.contributor.authorVeneranda, Marco
dc.contributor.authorReyes Rodríguez, Iván
dc.contributor.authorPascual Sánchez, Elena
dc.contributor.authorSanz Arranz, Aurelio
dc.contributor.authorKonstantinidis, Menelaos
dc.contributor.authorLalla, Emmanuel Alexis
dc.contributor.authorCharro Huerga, María Elena 
dc.contributor.authorRodríguez Gutiez, Eduardo 
dc.contributor.authorLópez Rodríguez, José M.
dc.contributor.authorSanz Requena, José Francisco
dc.contributor.authorDelgado Iglesias, Jaime 
dc.contributor.authorGonzález, Manuel A .
dc.contributor.authorRull Pérez, Fernando 
dc.contributor.authorLópez Reyes, Guillermo
dc.date.accessioned2024-01-11T13:41:56Z
dc.date.available2024-01-11T13:41:56Z
dc.date.issued2023
dc.identifier.citationJournal of Raman Spectroscopy, 2023, vol. 54, n. 11, p. 1353-1366es
dc.identifier.issn0377-0486es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64457
dc.descriptionProducción Científicaes
dc.description.abstractThe combined analysis of geological targets by complementary spectroscopic techniques could enhance the characterization of the mineral phases found on Mars. This is indeed the case with the SuperCam instrument onboard the Perseverance rover. In this framework, the present study seeks to evaluate and compare multiple machine learning techniques for the characterization of carbonate minerals based on Raman-LIBS (Laser-Induced Breakdown Spectroscopy) spectroscopic data. To do so, a Ca-Mg prediction curve was created by mixing hydromagnesite and calcite at different concentration ratios. After their characterization by Raman and LIBS spectroscopy, different multivariable machine learning (Gaussian process regression, support vector machines, ensembles of trees, and artificial neural networks) were used to predict the concentration ratio of each sample from their respective datasets. The results obtained by separately analyzing Raman and LIBS data were then compared to those obtained by combining them. By comparing their performance, this work demonstrates that mineral discrimination based on Gaussian and ensemble methods optimized the combine of Raman-LIBS dataset outperformed those ensured by Raman and LIBS data alone. This demonstrated that the fusion of data combination and machine learning is a promising approach to optimize the analysis of spectroscopic data returned from Mars.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWileyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationData combinationes
dc.subject.classificationLIBSes
dc.subject.classificationMachine learninges
dc.subject.classificationPCAes
dc.subject.classificationRamanes
dc.titleMachine learning methods applied to combined Raman and LIBS spectra: Implications for mineral discrimination in planetary missionses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Author(s)es
dc.identifier.doi10.1002/jrs.6611es
dc.relation.publisherversionhttps://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.6611es
dc.identifier.publicationfirstpage1353es
dc.identifier.publicationissue11es
dc.identifier.publicationlastpage1366es
dc.identifier.publicationtitleJournal of Raman Spectroscopyes
dc.identifier.publicationvolume54es
dc.peerreviewedSIes
dc.description.projectAgencia Estatal de Investigación, grant (PID2022-142490OB-C32)es
dc.description.projectMinisterio de Economía y Competitividad (MINECO),Grant/Award Number (RDE2018-102600-T)es
dc.identifier.essn1097-4555es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco25 Ciencias de la Tierra y del Espacioes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem