• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64457

    Título
    Machine learning methods applied to combined Raman and LIBS spectra: Implications for mineral discrimination in planetary missions
    Autor
    Julve González, SofiaAutoridad UVA Orcid
    Manrique Martínez, José AntonioAutoridad UVA Orcid
    Veneranda ., MarcoAutoridad UVA Orcid
    Reyes Rodríguez, IvánAutoridad UVA Orcid
    Pascual Sánchez, Elena
    Sanz Arranz, José AurelioAutoridad UVA Orcid
    Konstantinidis, Menelaos
    Lalla, Emmanuel Alexis
    Charro Huerga, María ElenaAutoridad UVA
    Rodríguez Gutiez, EduardoAutoridad UVA
    López Rodríguez, José M.
    Sanz Requena, José FranciscoAutoridad UVA Orcid
    Delgado Iglesias, JaimeAutoridad UVA Orcid
    González Delgado, Manuel ÁngelAutoridad UVA Orcid
    Rull Pérez, FernandoAutoridad UVA
    López Reyes, Guillermo EduardoAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    Wiley
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Raman Spectroscopy, 2023, vol. 54, n. 11, p. 1353-1366
    Resumen
    The combined analysis of geological targets by complementary spectroscopic techniques could enhance the characterization of the mineral phases found on Mars. This is indeed the case with the SuperCam instrument onboard the Perseverance rover. In this framework, the present study seeks to evaluate and compare multiple machine learning techniques for the characterization of carbonate minerals based on Raman-LIBS (Laser-Induced Breakdown Spectroscopy) spectroscopic data. To do so, a Ca-Mg prediction curve was created by mixing hydromagnesite and calcite at different concentration ratios. After their characterization by Raman and LIBS spectroscopy, different multivariable machine learning (Gaussian process regression, support vector machines, ensembles of trees, and artificial neural networks) were used to predict the concentration ratio of each sample from their respective datasets. The results obtained by separately analyzing Raman and LIBS data were then compared to those obtained by combining them. By comparing their performance, this work demonstrates that mineral discrimination based on Gaussian and ensemble methods optimized the combine of Raman-LIBS dataset outperformed those ensured by Raman and LIBS data alone. This demonstrated that the fusion of data combination and machine learning is a promising approach to optimize the analysis of spectroscopic data returned from Mars.
    Materias Unesco
    25 Ciencias de la Tierra y del Espacio
    Palabras Clave
    Data combination
    LIBS
    Machine learning
    PCA
    Raman
    ISSN
    0377-0486
    Revisión por pares
    SI
    DOI
    10.1002/jrs.6611
    Patrocinador
    Agencia Estatal de Investigación, grant (PID2022-142490OB-C32)
    Ministerio de Economía y Competitividad (MINECO),Grant/Award Number (RDE2018-102600-T)
    Version del Editor
    https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.6611
    Propietario de los Derechos
    © 2023 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64457
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP31 - Artículos de revista [167]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Machine-learning-methods-applied.pdf
    Tamaño:
    1.745Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10