• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64832

    Título
    Improving biometric recognition by means of score ratio, the likelihood ratio for non-probabilistic classifiers. A benchmarking study
    Autor
    Vivaracho Pascual, Carlos EnriqueAutoridad UVA Orcid
    Simón Hurtado, María AránzazuAutoridad UVA Orcid
    Manso Martinez, Esperanza
    Año del Documento
    2021-01-29
    Editorial
    IET
    Documento Fuente
    IET Biometrics, Open Access, 29 January 2021.
    Résumé
    One of the ever present goals in biometrics research is to improve system performance. Herein, an alternative method is proposed that is independent of the biometric characteristic and the system, as this proposal, Score Ratio, is applied to the output (comparison score) of the classifier. The Likelihood Ratio is widely used with probabilistic classifiers because it performs well in these circumstances. However, when the classifiers are non-probabilistic, then this ratio is not used. This is our proposal: with non-probabilistic classifier based systems, the decision is taken solely through the score, supposing that the biometric feature, X, belongs to the Claimant (H0 hypothesis), here, it is also proposed to make use of the score considering that X does not belong to the Claimant (H1 hypothesis); more specifically, using the ratio between these two scores: the Score Ratio. For more objective results, benchmarking and reproducibility are used in the experiments, applying our proposal with third-party (benchmarking) experimental protocols, databases, classifiers and performance measures for fingerprint, iris and finger vein recognition. Statistically significant improvements have been obtained when the Score Ratio is used with regard to not using it in all cases tested.
    Revisión por pares
    SI
    DOI
    10.1049/bme2.12011
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64832
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [110]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    IET Biometrics-2021-Vivaracho‐Pascual.pdf
    Tamaño:
    886.8Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10