Mostrar el registro sencillo del ítem
dc.contributor.author | Cano Torres, José María | |
dc.contributor.author | Sendra Pons, Juan Rafael | |
dc.contributor.author | Falkensteiner, Sebastian | |
dc.contributor.author | Robertz, Daniel | |
dc.date.accessioned | 2024-01-23T13:52:04Z | |
dc.date.available | 2024-01-23T13:52:04Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Journal of Symbolic Computation, Volume 114, 2023, Pages 1-17, | es |
dc.identifier.issn | 0747-7171 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/64910 | |
dc.description | Producción Científica | es |
dc.description.abstract | In this paper we study systems of autonomous algebraic ODEs in several differential indeterminates. We develop a notion of algebraic dimension of such systems by considering them as algebraic systems. Afterwards we apply differential elimination and analyze the behavior of the dimension in the resulting Thomas decomposition. For such systems of algebraic dimension one, we show that all formal Puiseux series solutions can be approximated up to an arbitrary order by convergent solutions. We show that the existence of Puiseux series and algebraic solutions can be decided algorithmically. Moreover, we present a symbolic algorithm to compute all algebraic solutions. The output can either be represented by triangular systems or by their minimal polynomials. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject | Matemáticas | es |
dc.subject.classification | Algebraic autonomous ordinary differential equation Puiseux series solution Convergent solution Artin approximation Algebraic solution Thomas decomposition | es |
dc.title | Algebraic and Puiseux series solutions of systems of autonomous algebraic ODEs of dimension one in several variables | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1016/j.jsc.2022.04.012 | es |
dc.relation.publisherversion | https://doi.org/10.1016/j.jsc.2022.04.012 | es |
dc.identifier.publicationfirstpage | 1 | es |
dc.identifier.publicationlastpage | 17 | es |
dc.identifier.publicationtitle | Journal of Symbolic Computation | es |
dc.identifier.publicationvolume | 114 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Agencia Estatal de Investigación Grant PID2019-105621GB-I00 | es |
dc.description.project | Ministerio de Ciencia, Innovación y Agencia Estatal de Investigación Grant PID2020-113192GB-I00 | es |
dc.description.project | Austrian Science Fund (FWF): P 31327-N32. | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1201 Álgebra | es |
dc.subject.unesco | 1204 Geometría | es |