Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64910
Título
Algebraic and Puiseux series solutions of systems of autonomous algebraic ODEs of dimension one in several variables
Año del Documento
2023
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Journal of Symbolic Computation, Volume 114, 2023, Pages 1-17,
Resumen
In this paper we study systems of autonomous algebraic ODEs in several differential indeterminates. We develop a notion of algebraic dimension of such systems by considering them as algebraic systems. Afterwards we apply differential elimination and analyze the behavior of the dimension in the resulting Thomas decomposition. For such systems of algebraic dimension one, we show that all formal Puiseux series solutions can be approximated up to an arbitrary order by convergent solutions. We show that the existence of Puiseux series and algebraic solutions can be decided algorithmically. Moreover, we present a symbolic algorithm to compute all algebraic solutions. The output can either be represented by triangular systems or by their minimal polynomials.
Materias (normalizadas)
Matemáticas
Materias Unesco
1201 Álgebra
1204 Geometría
Palabras Clave
Algebraic autonomous ordinary differential equation Puiseux series solution Convergent solution Artin approximation Algebraic solution Thomas decomposition
ISSN
0747-7171
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Agencia Estatal de Investigación Grant PID2019-105621GB-I00
Ministerio de Ciencia, Innovación y Agencia Estatal de Investigación Grant PID2020-113192GB-I00
Austrian Science Fund (FWF): P 31327-N32.
Ministerio de Ciencia, Innovación y Agencia Estatal de Investigación Grant PID2020-113192GB-I00
Austrian Science Fund (FWF): P 31327-N32.
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem