Mostrar el registro sencillo del ítem

dc.contributor.authorMartín Díaz, Ignacio
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.contributor.authorDuque Pérez, Óscar 
dc.contributor.authorde J. Romero-Troncoso, Rene
dc.date.accessioned2024-01-24T09:05:55Z
dc.date.available2024-01-24T09:05:55Z
dc.date.issued2017-05
dc.identifier.citationIEEE Transactions on Industry Applications, May/Jun 2017, 53, 3, 3066-3075,es
dc.identifier.issn0093-9994es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64936
dc.description.abstractAbstract—Intelligent fault detection in induction motors (IMs) is a widely studied research topic. Various artificial-intelligence- based approaches have been proposed to deal with a large amount of data obtained from destructive laboratory testing. However, in real applications, such volume of data is not always available due to the effort required in obtaining the predictors for classifying the faults. Therefore, in realistic scenarios, it is necessary to cope with the small-data problem, as it is known in the literature. Fault- related instances along with healthy state observations obtained from the IM compose datasets that are usually imbalanced, where the number of instances classified as the faulty class (minority) is much lower than those classified under the healthy class (ma- jority). This paper presents a novel supervised classification ap- proach for IM faults based on the adaptive boosting algorithm with an optimized sampling technique that deals with the imbal- anced experimental dataset. The stator current signal is used to compose a dataset with features both from the time domain and from the frequency domain. The experimental results demonstrate that the proposed approach achieves higher performance metrics than others classifiers used in this field for the incipient detection and classification of faults in IM. Index Terms—Classification algorithms, condition monitoring, data analysis, fault diagnosis, induction motors (IMs), rotors, sam-es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleEarly Fault Detection in Induction Motors Using AdaBoost With Imbalanced Small Data and Optimized Samplinges
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1109/TIA.2016.2618756es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/abstract/document/7593238es
dc.identifier.publicationfirstpage3066es
dc.identifier.publicationissue3es
dc.identifier.publicationlastpage3075es
dc.identifier.publicationtitleIEEE Transactions on Industry Applicationses
dc.identifier.publicationvolume53es
dc.peerreviewedSIes
dc.identifier.essn1939-9367es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem