• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64936

    Título
    Early fault detection in induction motors using AdaBoost with imbalanced small data and optimized sampling
    Autor
    Martín Diaz, IgnacioAutoridad UVA
    Moríñigo Sotelo, DanielAutoridad UVA Orcid
    Duque Pérez, ÓscarAutoridad UVA Orcid
    Romero Troncoso, René de Jesús
    Año del Documento
    2017-05
    Documento Fuente
    IEEE Transactions on Industry Applications, May/Jun 2017, 53, 3, 3066-3075,
    Résumé
    Abstract—Intelligent fault detection in induction motors (IMs) is a widely studied research topic. Various artificial-intelligence- based approaches have been proposed to deal with a large amount of data obtained from destructive laboratory testing. However, in real applications, such volume of data is not always available due to the effort required in obtaining the predictors for classifying the faults. Therefore, in realistic scenarios, it is necessary to cope with the small-data problem, as it is known in the literature. Fault- related instances along with healthy state observations obtained from the IM compose datasets that are usually imbalanced, where the number of instances classified as the faulty class (minority) is much lower than those classified under the healthy class (ma- jority). This paper presents a novel supervised classification ap- proach for IM faults based on the adaptive boosting algorithm with an optimized sampling technique that deals with the imbal- anced experimental dataset. The stator current signal is used to compose a dataset with features both from the time domain and from the frequency domain. The experimental results demonstrate that the proposed approach achieves higher performance metrics than others classifiers used in this field for the incipient detection and classification of faults in IM. Index Terms—Classification algorithms, condition monitoring, data analysis, fault diagnosis, induction motors (IMs), rotors, sam-
    ISSN
    0093-9994
    Revisión por pares
    SI
    DOI
    10.1109/TIA.2016.2618756
    Version del Editor
    https://ieeexplore.ieee.org/abstract/document/7593238
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/64936
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP45 - Artículos de revista [47]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Early fault.pdf
    Tamaño:
    691.9Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10