Show simple item record

dc.contributor.authorMartín Diaz, Ignacio 
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.contributor.authorDuque Pérez, Óscar 
dc.contributor.authorRomero Troncoso, René de Jesús
dc.date.accessioned2024-01-24T09:25:55Z
dc.date.available2024-01-24T09:25:55Z
dc.date.issued2018-02
dc.identifier.citationIEEE Transactions on Industry Applications, May/Jun 2018, 54, 3, 2215-2224,es
dc.identifier.issn0093-9994es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64938
dc.description.abstractThe diagnosis of electric machines, such as induc-tion motors, is one of the key tasks that needs to be performed to guarantee their right operation as electromechanical energy con-verters in most industrial facilities. The ability to reliably identify a mechanical fault occurrence before it becomes catastrophic can reduce risks related to the productive chain. Recently, different in-telligent approaches have been proposed to develop feature-based methods for automatic rotor fault diagnosis of induction motors. This paper provides an experimental comparative evaluation of different machine learning techniques for rotor fault identifica-tions. The classifiers are tested with data obtained under different operating conditions of the ones used to train them, as it is usual in industry. The input information is obtained from current signals of an induction motor with two states of rotor bar degradation under two preestablished load levels.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleAn experimental comparative evaluation of Machine Learning techniques for motor fault diagnosis under various operating conditionses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1109/TIA.2018.2801863es
dc.identifier.publicationfirstpage2215es
dc.identifier.publicationissue3es
dc.identifier.publicationlastpage2224es
dc.identifier.publicationtitleIEEE Transactions on Industry Applicationses
dc.identifier.publicationvolume54es
dc.peerreviewedSIes
dc.identifier.essn1939-9367es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record