• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64967

    Título
    Algebraic, Rational and Puiseux Series Solutions of Systems of Autonomous Algebraic ODEs of Dimension One
    Autor
    Cano Torres, José MaríaAutoridad UVA Orcid
    Falkensteiner, Sebastian
    Sendra Pons, Juan Rafael
    Año del Documento
    2021
    Editorial
    Birkhauser
    Descripción
    Producción Científica
    Documento Fuente
    Mathematics in Computer Science, Volume 15, Issue 2, Pages 189 - 198, June 2021.
    Resumo
    In this paper, we study the algebraic, rational and formal Puiseux series solutions of certain type of systems of autonomous ordinary differential equations. More precisely, we deal with systems which associated algebraic set is of dimension one. We establish a relationship between the solutions of the system and the solutions of an associated first order autonomous ordinary differential equation, that we call the reduced differential equation. Using results on such equations, we prove the convergence of the formal Puiseux series solutions of the system, expanded around a finite point or at infinity, and we present an algorithm to describe them. In addition, we bound the degree of the possible algebraic and rational solutions, and we provide an algorithm to decide their existence and to compute such solutions if they exist. Moreover, if the reduced differential equation is non trivial, for every given point (x, y) ∈ C2, we prove the existence of a convergent Puiseux series solution y(x) of the original system such that y(x) = y. © 2020, The Author(s).
    Materias (normalizadas)
    Matemáticas
    Materias Unesco
    1201 Álgebra
    1204 Geometría
    Palabras Clave
    Algebraic autonomous ordinary differential equation; Algebraic solutions; Algebraic space curve; Convergent solution; Formal Puiseux series solution; Rational solutions
    ISSN
    1661-8270
    Revisión por pares
    SI
    DOI
    10.1007/s11786-020-00478-w
    Patrocinador
    Ministerio de Economía, Industria y Competitividad, AEI, FEDER, Grant MTM2016-77642-C2-1-P
    FEDER/Ministerio de Ciencia, Innovación y Universidades Agencia Estatal de Investigación/MTM2017-88796-P
    Austrian Science Fund (FWF): P 31327-N32
    Open access funding provided by Johannes Kepler University Linz
    Version del Editor
    https://link.springer.com/article/10.1007/s11786-020-00478-w?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/64967
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP96 - Artículos de revista [95]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    MathCompSci_2021.pdf
    Tamaño:
    299.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10