Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64967
Título
Algebraic, Rational and Puiseux Series Solutions of Systems of Autonomous Algebraic ODEs of Dimension One
Año del Documento
2021
Editorial
Birkhauser
Descripción
Producción Científica
Documento Fuente
Mathematics in Computer Science, Volume 15, Issue 2, Pages 189 - 198, June 2021.
Résumé
In this paper, we study the algebraic, rational and formal Puiseux series solutions of certain type of systems of autonomous ordinary differential equations. More precisely, we deal with systems which associated algebraic set is of dimension one. We establish a relationship between the solutions of the system and the solutions of an associated first order autonomous ordinary differential equation, that we call the reduced differential equation. Using results on such equations, we prove the convergence of the formal Puiseux series solutions of the system, expanded around a finite point or at infinity, and we present an algorithm to describe them. In addition, we bound the degree of the possible algebraic and rational solutions, and we provide an algorithm to decide their existence and to compute such solutions if they exist. Moreover, if the reduced differential equation is non trivial, for every given point (x, y) ∈ C2, we prove the existence of a convergent Puiseux series solution y(x) of the original system such that y(x) = y. © 2020, The Author(s).
Materias (normalizadas)
Matemáticas
Materias Unesco
1201 Álgebra
1204 Geometría
Palabras Clave
Algebraic autonomous ordinary differential equation; Algebraic solutions; Algebraic space curve; Convergent solution; Formal Puiseux series solution; Rational solutions
ISSN
1661-8270
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad, AEI, FEDER, Grant MTM2016-77642-C2-1-P
FEDER/Ministerio de Ciencia, Innovación y Universidades Agencia Estatal de Investigación/MTM2017-88796-P
Austrian Science Fund (FWF): P 31327-N32
Open access funding provided by Johannes Kepler University Linz
FEDER/Ministerio de Ciencia, Innovación y Universidades Agencia Estatal de Investigación/MTM2017-88796-P
Austrian Science Fund (FWF): P 31327-N32
Open access funding provided by Johannes Kepler University Linz
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document