Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64971
Título
Puiseux Series and Algebraic Solutions of First Order Autonomous AODEs – A MAPLE Package
Año del Documento
2021
Editorial
Springer Science and Business Media Deutschland GmbH
Descripción
Producción Científica
Documento Fuente
Communications in Computer and Information Science Volume 1414, Pages 89 - 1032021 4th Maple Conference, MC 2020 Waterloo2 November 2020through 6 November 2020. Code 262939
Abstract
There exist several methods for computing exact solutions of algebraic differential equations. Most of the methods, however, do not ensure existence and uniqueness of the solutions and might fail after several steps, or are restricted to linear equations. The authors have presented in previous works a method to overcome this problem for autonomous first order algebraic ordinary differential equations and formal Puiseux series solutions and algebraic solutions. In the first case, all solutions can uniquely be represented by a sufficiently large truncation and in the latter case by its minimal polynomial.
The main contribution of this paper is the implementation, in a MAPLE package named FirstOrderSolve, of the algorithmic ideas presented therein. More precisely, all formal Puiseux series and algebraic solutions, including the generic and singular solutions, are computed and described uniquely. The computation strategy is to reduce the given differential equation to a simpler one by using local parametrizations and the already known degree bounds.
Materias (normalizadas)
Matemáticas
Materias Unesco
1201 Álgebra
1204 Geometría
1203 Ciencia de Los Ordenadores
Palabras Clave
Maple Symbolic computation Algebraic differential equation Formal Puiseux series solution Algebraic solution
ISSN
1865-0929
Revisión por pares
SI
Patrocinador
Bilateral project ANR-17-CE40-0036 and DFG-391322026 SYMBIONT
Ministerio de Ciencia, Innovación y Agencia Estatal de Investigación Grant PID2019-105621GB-I00
FEDER/Ministerio de Ciencia, Innovación y Universidades Agencia Estatal de Investigación/MTM2017-88796-P
Austrian Science Fund (FWF): P 31327-N32
Ministerio de Ciencia, Innovación y Agencia Estatal de Investigación Grant PID2019-105621GB-I00
FEDER/Ministerio de Ciencia, Innovación y Universidades Agencia Estatal de Investigación/MTM2017-88796-P
Austrian Science Fund (FWF): P 31327-N32
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Collections
Files in this item