• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65229

    Título
    Prototype reduction algorithms comparison in nearest neighbor classification for sensor data: Empirical study
    Autor
    Serrano Gutiérrez, JorgeAutoridad UVA Orcid
    Congreso
    2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM)
    Año del Documento
    2017
    Editorial
    IEEE
    Résumé
    This work presents a comparative study of prototype selection (PS) algorithms. Such a study is done over data-from-sensor acquired by an embedded system. Particularly, five flexometers are used as sensors, which are located inside a glove aimed to read sign language. Measures were taken to quantify the balance between classification performance and reduction training set data (QCR) with k neighbors equal to 3 and 1 to force the classifier (kNN) to the maximum. Two tests were used: (a)the QCR performance and (b) the embedded system decision in real proves. As result the Random Mutation Hill Climbing (RMHC) algorithm is considered the best option to choose in this data type with removed instances at 87% and classification performance at 82% in software tests, also the classifier kNN must be with k=3 to improve the classification performance. In a real situation, with the algorithm implemented. The system makes correct decisions at 81% with 5 persons doing sign language in real time.
    DOI
    10.1109/ETCM.2017.8247530
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65229
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP32 - Comunicaciones a congresos, conferencias, etc. [56]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Prototype_reduction_algorithms_comparison_in_nearest_neighbor_classification_for_sensor_data_Empirical_study.pdf
    Tamaño:
    615.7Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10