Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65403
Título
Universal realizability in low dimension
Año del Documento
2021
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Linear Algebra and its Applications 619 (2021) 107–136
Resumen
We say that a list Λ = {λ1,...,λn} of complex numbers is realizable, if it is the spectrum of a nonnegative matrix A (a realizing matrix). We say that Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. This work studies the universal realizability of spectra in low dimension, that is, realizable spectra of size n ≤ 5. It is clear that for n ≤ 3 the concepts of universally realizable and realizable are equivalent. The case n = 4 is easily deduced from previous results in [7]. We characterize the universal realizability of real spectra of size 5 and trace zero, and we describe a region for the universal realizability of nonreal 5-spectra with trace zero. As an important by-product of our study, we also show that realizable lists on the left half- plane, that is, lists Λ = {λ1, . . . , λn}, where λ1 is the Perron eigenvalue and Re λi ≤ 0, for i = 2,...,n, are not necessarily universally realizable.
Palabras Clave
Nonnegative matrix
Inverse eigenvalue problem
Universal realizability
ISSN
0024-3795
Revisión por pares
SI
Patrocinador
Fondecyt 1170313, Chile
Conicyt-PAI 79160002, 2016, Chile
PGC2018-096446-B-C21 (MINECO/FEDER)
MTM2017-85996-R (MINECO/FEDER)
Consejería de Educación de la Junta de Castilla y León (Spain) VA128G18
Conicyt-PAI 79160002, 2016, Chile
PGC2018-096446-B-C21 (MINECO/FEDER)
MTM2017-85996-R (MINECO/FEDER)
Consejería de Educación de la Junta de Castilla y León (Spain) VA128G18
Version del Editor
Propietario de los Derechos
0024-3795/© 2021 Elsevier Inc. All rights reserved.
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem