• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65593

    Título
    Feature selection from nocturnal oximetry using genetic algorithms to assist in obstructive sleep apnoea diagnosis
    Autor
    Álvarez González, DanielAutoridad UVA Orcid
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Marcos Martín, José Víctor
    Campo Matias, Félix delAutoridad UVA Orcid
    Año del Documento
    2012
    Editorial
    ELSEVIER
    Descripción
    Producción Científica
    Documento Fuente
    Medical Engineering & Physics, 2012, vol. 34, n. 8, p. 1049-1057.
    Resumen
    Nocturnal pulse oximetry (NPO) has demonstrated to be a powerful tool to help in obstructive sleep apnoea (OSA) detection. However, additional analysis is needed to use NPO alone as an alternative to nocturnal polysomnography (NPSG), which is the gold standard for a definitive diagnosis. In the present study, we exhaustively analysed a database of blood oxygen saturation (SpO2) recordings (80 OSA-negative and 160 OSA-positive) to obtain further knowledge on the usefulness of NPO. Population set was randomly divided into training and test sets. A feature extraction stage was carried out: 16 features (time and frequency statistics and spectral and nonlinear features) were computed. A genetic algorithm (GA) approach was applied in the feature selection stage. Our methodology achieved 87.5% accuracy (90.6% sensitivity and 81.3% specificity) in the test set using a logistic regression (LR) classifier with a reduced number of complementary features (3 time-domain statistics, 1 frequency-domain statistic, 1 conventional spectral feature and 1 nonlinear feature) automatically selected by means of GAs. Our results improved diagnostic performance achieved with conventional oximetric indexes commonly used by physicians. We concluded that GAs could be an effective and robust tool to search for essential oximetric features that could enhance NPO in the context of OSA diagnosis.
    ISSN
    1350-4533
    Revisión por pares
    SI
    DOI
    10.1016/j.medengphy.2011.11.009
    Patrocinador
    This work has been partially supported by Ministerio de Ciencia e Innovación and FEDER grant TEC 2008-02241, the grant project from the Consejería de Sanidad de la Junta de Castilla y León GRS 337/A/09 and the grant project from the Consejería de Educación de la Junta de Castilla y León VA111A11-2. D. Álvarez was in receipt of a PIRTU grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund (ESF).
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1350453311003006?via%3Dihub
    Propietario de los Derechos
    ELSEVIER
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65593
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    (1)Alvarez_et_al_MEP-2012(accepted_version).pdf
    Tamaño:
    1.008Mb
    Formato:
    Adobe PDF
    Descripción:
    Accepted version
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10