Mostrar el registro sencillo del ítem

dc.contributor.authorÁLVAREZ, DANIEL
dc.contributor.authorHORNERO, ROBERTO
dc.contributor.authorMARCOS, J. VÍCTOR
dc.contributor.authorWESSEL, NIELS
dc.contributor.authorPENZEL, THOMAS
dc.contributor.authorGLOS, MARTIN
dc.contributor.authorDEL CAMPO, FÉLIX
dc.date.accessioned2024-02-02T15:49:59Z
dc.date.available2024-02-02T15:49:59Z
dc.date.issued2013
dc.identifier.citationInternational Journal of Neural Systems, 2013, vol. 23, n. 5, p. 1-18.es
dc.identifier.issn0129-0657es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65594
dc.descriptionProducción Científicaes
dc.description.abstractThis study is aimed at assessing the usefulness of different feature selection and classification methodologies in the context of sleep apnea hypopnea syndrome (SAHS) detection. Feature extraction, selection and classification stages were applied to analyze blood oxygen saturation (SaO2) recordings in order to simplify polysomnography (PSG), the gold standard diagnostic methodology for SAHS. Statistical, spectral and nonlinear measures were computed to compose the initial feature set. Principal component analysis (PCA), forward stepwise feature selection (FSFS) and genetic algorithms (GAs) were applied to select feature subsets. Fisher’s linear discriminant (FLD), logistic regression (LR) and support vector machines (SVMs) were applied in the classification stage. Optimum classification algorithms from each combination of these feature selection and classification approaches were prospectively validated on datasets from two independent sleep units. FSFS+LR achieved the highest diagnostic performance using a small feature subset (4 features), reaching 83.2% accuracy in the validation set and 88.7% accuracy in the test set. Similarly, GAs+SVM also achieved high generalization capability using a small number of input features (7 features), with 84.2% accuracy on the validation set and 84.5% accuracy in the test set. Our results suggest that reduced subsets of complementary features (25% to 50% of total features) and classifiers with high generalization ability could provide high-performance screening tools in the context of SAHS.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWORLD SCIENTIFIC PUBLISHINGes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleASSESSMENT OF FEATURE SELECTION AND CLASSIFICATION APPROACHES TO ENHANCE INFORMATION FROM OVERNIGHT OXIMETRY IN THE CONTEXT OF APNEA DIAGNOSISes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderWORLD SCIENTIFIC PUBLISHINGes
dc.identifier.doi10.1142/S0129065713500202es
dc.relation.publisherversionhttps://www.worldscientific.com/doi/abs/10.1142/S0129065713500202es
dc.identifier.publicationfirstpage1350020-1es
dc.identifier.publicationissue05es
dc.identifier.publicationlastpage1350020-18es
dc.identifier.publicationtitleInternational Journal of Neural Systemses
dc.identifier.publicationvolume23es
dc.peerreviewedSIes
dc.description.projectThis research was supported in part by the Ministerio de Economía y Competitividad and FEDER under project TEC2011-22987, the Proyecto Cero 2011 on Ageing from Fundación General CSIC, Obra Social La Caixa and CSIC and project VA111A11-2 from Consejería de Educación (Junta de Castilla y León). D. Álvarez was in receipt of a PIRTU grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund (ESF).es
dc.identifier.essn1793-6462es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem