Mostrar el registro sencillo del ítem

dc.contributor.authorMarcos, J. V.
dc.contributor.authorHornero, R.
dc.contributor.authorÁlvarez, D.
dc.contributor.authorAboy, M.
dc.contributor.authorDel Campo, F.
dc.date.accessioned2024-02-02T16:18:24Z
dc.date.available2024-02-02T16:18:24Z
dc.date.issued2012
dc.identifier.citationIEEE Transactions on Biomedical Engineering, 2012, vol. 59, n. 1, p. 141-149.es
dc.identifier.issn0018-9294es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65597
dc.descriptionProducción Científicaes
dc.description.abstractNocturnal polysomnography (PSG) is the goldstandard for sleep apnea-hypopnea syndrome (SAHS) diagnosis. It provides the value of the apnea-hypopnea index (AHI), which is used to evaluate SAHS severity. However, PSG is costly, complex, and time-consuming. We present a novel approach for automatic estimation of the AHI from nocturnal oxygen saturation (SaO2 ) recordings and the results of an assessment study designed to characterize its performance. A set of 240 SaO2 signals was available for the assessment study. The data were divided into training (96 signals) and test (144 signals) sets for model optimization and validation, respectively. Fourteen time-domain and frequency-domain features were used to quantify the effect of SAHS on SaO2 recordings. Regression analysis was performed to estimate the functional relationship between the extracted features and the AHI. Multiple linear regression (MLR) and multilayer perceptron (MLP) neural networks were evaluated. The MLP algorithm achieved the highest performance with an intraclass correlation coefficient (ICC) of 0.91. The proposed MLP-based method could be used as an accurate and cost-effective procedure for SAHS diagnosis in the absence of PSG.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INCes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleAutomated Prediction of the Apnea-Hypopnea Index from Nocturnal Oximetry Recordingses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderIEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INCes
dc.identifier.doi10.1109/TBME.2011.2167971es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/6019022es
dc.identifier.publicationfirstpage141es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage149es
dc.identifier.publicationtitleIEEE Transactions on Biomedical Engineeringes
dc.identifier.publicationvolume59es
dc.peerreviewedSIes
dc.description.projectThis work was supported in part by the Ministerio de Ciencia e Innovación and FEDER under Grant TEC 2008-02241, and in part by the grant project from the Consejería de Sanidad de la Junta de Castilla y León GRS 337/A/09.es
dc.identifier.essn1558-2531es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem