Mostrar el registro sencillo del ítem

dc.contributor.authorMarcos, J. Víctor
dc.contributor.authorHornero, Roberto
dc.contributor.authorNabney, Ian T.
dc.contributor.authorÁlvarez, Daniel
dc.contributor.authorGutiérrez-Tobal, Gonzalo C.
dc.contributor.authordel Campo, Félix
dc.date.accessioned2024-02-02T16:27:51Z
dc.date.available2024-02-02T16:27:51Z
dc.date.issued2016
dc.identifier.citationMedical Engineering & Physics, 2016, vol. 38, n. 3, p. 216-224.es
dc.identifier.issn1350-4533es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65598
dc.descriptionProducción Científicaes
dc.description.abstractThe relationship between sleep apnoea–hypopnoea syndrome (SAHS) severity and the regularity of nocturnal oxygen saturation (SaO2) recordings was analysed. Three different methods were proposed to quantify regularity: approximate entropy (AEn), sample entropy (SEn) and kernel entropy (KEn). A total of 240 subjects suspected of suffering from SAHS took part in the study. They were randomly divided into a training set (96 subjects) and a test set (144 subjects) for the adjustment and assessment of the proposed methods, respectively. According to the measurements provided by AEn, SEn and KEn, higher irregularity of oximetry signals is associated with SAHS-positive patients. Receiver operating characteristic (ROC) and Pearson correlation analyses showed that KEn was the most reliable predictor of SAHS. It provided an area under the ROC curve of 0.91 in two-class classification of subjects as SAHS-negative or SAHS-positive. Moreover, KEn measurements from oximetry data exhibited a linear dependence on the apnoea hypopnoea index, as shown by a correlation coefficient of 0.87. Therefore, these measurements could be used for the development of simplified diagnostic techniques in order to reduce the demand for polysomnographies. Furthermore, KEn represents a convincing alternative to AEn and SEn for the diagnostic analysis of noisy biomedical signals.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherELSEVIERes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleRegularity analysis of nocturnal oximetry recordings to assist in the diagnosis of sleep apnoea syndromees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderELSEVIERes
dc.identifier.doi10.1016/j.medengphy.2015.11.010es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1350453315002684?via%3Dihubes
dc.identifier.publicationfirstpage216es
dc.identifier.publicationissue3es
dc.identifier.publicationlastpage224es
dc.identifier.publicationtitleMedical Engineering & Physicses
dc.identifier.publicationvolume38es
dc.peerreviewedSIes
dc.description.projectThis study has been partly funded by project VA059U13 from Junta de Castilla y León and project TEC 2011–22987 from Ministerio de Economía y Competitividad and FEDER grantes
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem