• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65598

    Título
    Regularity analysis of nocturnal oximetry recordings to assist in the diagnosis of sleep apnoea syndrome
    Autor
    Marcos Martín, José Víctor
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Nabney, Ian T.
    Álvarez González, DanielAutoridad UVA Orcid
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Campo Matias, Félix delAutoridad UVA Orcid
    Año del Documento
    2016
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Medical Engineering & Physics, 2016, vol. 38, n. 3, p. 216-224.
    Resumo
    The relationship between sleep apnoea–hypopnoea syndrome (SAHS) severity and the regularity of nocturnal oxygen saturation (SaO2) recordings was analysed. Three different methods were proposed to quantify regularity: approximate entropy (AEn), sample entropy (SEn) and kernel entropy (KEn). A total of 240 subjects suspected of suffering from SAHS took part in the study. They were randomly divided into a training set (96 subjects) and a test set (144 subjects) for the adjustment and assessment of the proposed methods, respectively. According to the measurements provided by AEn, SEn and KEn, higher irregularity of oximetry signals is associated with SAHS-positive patients. Receiver operating characteristic (ROC) and Pearson correlation analyses showed that KEn was the most reliable predictor of SAHS. It provided an area under the ROC curve of 0.91 in two-class classification of subjects as SAHS-negative or SAHS-positive. Moreover, KEn measurements from oximetry data exhibited a linear dependence on the apnoea hypopnoea index, as shown by a correlation coefficient of 0.87. Therefore, these measurements could be used for the development of simplified diagnostic techniques in order to reduce the demand for polysomnographies. Furthermore, KEn represents a convincing alternative to AEn and SEn for the diagnostic analysis of noisy biomedical signals.
    Palabras Clave
    Oxygen saturation
    Entropy rate
    Approximate entropy
    Sample entropy
    Kernel entropy
    Density estimation
    ISSN
    1350-4533
    Revisión por pares
    SI
    DOI
    10.1016/j.medengphy.2015.11.010
    Patrocinador
    This study has been partly funded by project VA059U13 from Junta de Castilla y León and project TEC 2011–22987 from Ministerio de Economía y Competitividad and FEDER grant
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1350453315002684
    Propietario de los Derechos
    Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65598
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    (S2)Marcos_et_al_ME&P-2016(accepted_version).pdf
    Tamaño:
    707.0Kb
    Formato:
    Adobe PDF
    Descripción:
    Accepted version
    Thumbnail
    Visualizar/Abrir
    Atribución-NoComercial-SinDerivados 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución-NoComercial-SinDerivados 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10