Show simple item record

dc.contributor.authorCano Urdiales, Begoña 
dc.date.accessioned2024-02-03T08:18:34Z
dc.date.available2024-02-03T08:18:34Z
dc.date.issued2022
dc.identifier.citationMathematical Methods in the Applied Sciences, Noviembre 2022, issue 17, p.10503-11980es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65616
dc.descriptionProducción Científicaes
dc.description.abstractIn this paper a thorough analysis is carried out of the type of order reductionthat Lawson methods exhibit when used to integrate nonlinear initial boundaryvalue problems. In particular, we focus on nonlinear reaction-diffusion prob-lems, and therefore, this study is important in a large number of practicalapplications modeled by this type of nonlinear equations. A theoretical study ofthe local and global error of the total discretization of the problem is carried out,taking into account both, the error coming from the space discretization andthat due to the integration in time. These results are also corroborated by thenumerical experiments performed in this paper.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWiley Online Libraryes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleCMMSE: Analysis of order reduction when Lawson methods integrate nonlinear initial boundary value problemses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1002/mma.8451es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte de los proyecto de investigación: PGC2018-101443-B-I00(Ministerio de Ciencia e Innovación andRegional Development European Funds) y VA169P20 ( Junta de Castillay León and Feder)es
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record