Mostrar el registro sencillo del ítem

dc.contributor.authorCano Urdiales, Begoña 
dc.date.accessioned2024-02-03T08:30:10Z
dc.date.available2024-02-03T08:30:10Z
dc.date.issued2021
dc.identifier.citationMathematics Abril 2021, 9(9), 1008es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65617
dc.description.abstractIn previous papers, a technique has been suggested to avoid order reduction when inte- grating initial boundary value problems with several kinds of exponential methods. The technique implies in principle to calculate additional terms at each step from those already necessary without avoiding order reduction. The aim of the present paper is to explain the surprising result that, many times, in spite of having to calculate more terms at each step, the computational cost of doing it through Krylov methods decreases instead of increases. This is very interesting since, in that way, the methods improve not only in terms of accuracy, but also in terms of computational cost.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleWhy Improving the Accuracy of Exponential Integrators Can Decrease Their Computational Cost?es
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.3390/math9091008es
dc.peerreviewedSIes
dc.description.projectEste trabajo ha sido financiado por el Ministerio de Ciencia e Innovación and Regional Development European Funds a través del proyecto PGC2018-101443-B-I00 y por Junta de Castilla y León y Feder a través del proyecto VA169P20es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem