Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez Brizuela, Guillermo
dc.contributor.authorSantos-Criado, Francisco-Javier
dc.contributor.authorSanz-Gobernado, Daniel
dc.contributor.authorFuente López, Eusebio de la 
dc.contributor.authorFraile Marinero, Juan Carlos 
dc.contributor.authorPérez Turiel, Javier 
dc.contributor.authorCisnal de la Rica, Ana
dc.date.accessioned2024-02-05T17:14:05Z
dc.date.available2024-02-05T17:14:05Z
dc.date.issued2022
dc.identifier.citationGauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks. Sensors 2022, 22, 5180es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65761
dc.description.abstractMedical instruments detection in laparoscopic video has been carried out to increase the autonomy of surgical robots, evaluate skills or index recordings. However, it has not been extended to surgical gauzes. Gauzes can provide valuable information to numerous tasks in the operating room, but the lack of an annotated dataset has hampered its research. In this article, we present a segmentation dataset with 4003 hand-labelled frames from laparoscopic video. To prove the dataset potential, we analyzed several baselines: detection using YOLOv3, coarse segmentation, and segmentation with a U-Net. Our results show that YOLOv3 can be executed in real time but provides a modest recall. Coarse segmentation presents satisfactory results but lacks inference speed. Finally, the U-Net baseline achieves a good speed-quality compromise running above 30 FPS while obtaining an IoU of 0.85. The accuracy reached by U-Net and its execution speed demonstrate that precise and real-time gauze segmentation can be achieved, training convolutional neural networks on the proposed dataset.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationconvolutional neural networks; image segmentation; image object detection; surgical tool detection; minimally invasive surgeryes
dc.titleGauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.3390/s22145180es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/22/14/5180es
dc.identifier.publicationfirstpage5180es
dc.identifier.publicationissue14es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume22es
dc.peerreviewedSIes
dc.identifier.essn1424-8220es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem