Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65986
Título
Synthetic Dataset of Electroluminescence Images of Photovoltaic Cells by Deep Convolutional Generative Adversarial Networks
Autor
Año del Documento
2023
Editorial
MDPI
Documento Fuente
Romero, H.F.M.; Hernández-Callejo, L.; Rebollo, M.Á.G.; Cardeñoso-Payo, V.; Gómez, V.A.; Bello, H.J.; Moyo, R.T.; Aragonés, J.I.M. Synthetic Dataset of Electroluminescence Images of Photovoltaic Cells by Deep Convolutional Generative Adversarial Networks. Sustainability 2023, 15, 7175. https://doi.org/10.3390/su15097175
Resumen
Affordable and clean energy is one of the Sustainable Development Goals (SDG). SDG compliance and economic crises have boosted investment in solar energy as an important source of renewable generation. Nevertheless, the complex maintenance of solar plants is behind the increasing trend to use advanced artificial intelligence techniques, which critically depend on big amounts of data. In this work, a model based on Deep Convolutional Generative Adversarial Neural Networks (DCGANs) was trained in order to generate a synthetic dataset made of 10,000 electroluminescence images of photovoltaic cells, which extends a smaller dataset of experimentally acquired images. The energy output of the virtual cells associated with the synthetic dataset is predicted using a Random Forest regression model trained from real IV curves measured on real cells during the image acquisition process. The assessment of the resulting synthetic dataset gives an Inception Score of 2.3 and a Fréchet Inception Distance of 15.8 to the real original images, which ensures the excellent quality of the generated images. The final dataset can thus be later used to improve machine learning algorithms or to analyze patterns of solar cell defects.
Revisión por pares
SI
Idioma
spa
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem