• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65994

    Título
    Evaluation of Artificial Intelligence-Based Models for Classifying Defective Photovoltaic Cells
    Autor
    Pérez Romero, Álvaro
    Mateo Romero, Héctor FelipeAutoridad UVA Orcid
    Gallardo Saavedra, SaraAutoridad UVA Orcid
    Alonso Gómez, VíctorAutoridad UVA Orcid
    Alonso García, María del Carmen
    Hernández Callejo, LuisAutoridad UVA Orcid
    Año del Documento
    2021
    Documento Fuente
    Pérez-Romero, Á.; Mateo-Romero, H.F.; Gallardo-Saavedra, S.; Alonso-Gómez, V.; Alonso-García, M.d.C.; Hernández-Callejo, L. Evaluation of Artificial Intelligence-Based Models for Classifying Defective Photovoltaic Cells. Appl. Sci. 2021, 11, 4226. https://doi.org/10.3390/app11094226
    Resumen
    Solar Photovoltaic (PV) energy has experienced an important growth and prospect during the last decade due to the constant development of the technology and its high reliability, together with a drastic reduction in costs. This fact has favored both its large-scale implementation and small-scale Distributed Generation (DG). PV systems integrated into local distribution systems are considered to be one of the keys to a sustainable future built environment in Smart Cities (SC). Advanced Operation and Maintenance (O&M) of solar PV plants is necessary. Powerful and accurate data are usually obtained on-site by means of current-voltage (I-V) curves or electroluminescence (EL) images, with new equipment and methodologies recently proposed. In this work, authors present a comparison between five AI-based models to classify PV solar cells according to their state, using EL images at the PV solar cell level, while the cell I-V curves are used in the training phase to be able to classify the cells based on its production efficiency. This automatic classification of defective cells enormously facilitates the identification of defects for PV plant operators, decreasing the human labor and optimizing the defect location. In addition, this work presents a methodology for the selection of important variables for the training of a defective cell classifier.
    Revisión por pares
    SI
    DOI
    10.3390/app11094226
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/65994
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP32 - Artículos de revista [284]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    applsci-11-04226-v2 (2).pdf
    Tamaño:
    2.649Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10