Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65998
Título
Estimation of the performance of photovoltaic cells by means of an adaptative neural fuzzy inference model
Autor
Año del Documento
2024
Documento Fuente
Mateo-Romero, H.F. et al. (2024). Estimation of the Performance of Photovoltaic Cells by Means of an Adaptative Neural Fuzzy Inference Model. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-Cities 2023. Communications in Computer and Information Science, vol 1938. Springer, Cham. https://doi.org/10.1007/978-3-031-52517-9_12
Resumen
This paper presents an Adaptive Neuro-fuzzy Inference System capable of predicting the output power of photovoltaic cells using their electroluminescence image and their IV curve. The input consists of 3 different features: the number of black pixels, grey pixels and white pixels. ANFIS combines the learning capabilities of Artificial Neural Networks with the comprehensible rules of Fuzzy Logic, being optimal for this problem, as demonstrated by the metrics of MAE of 0.064 and MSE of 0.009, which are better than the performance of other tested methods such as Support Vector Machines or Linear Regressor.
ISSN
1865-0929
Revisión por pares
SI
Idioma
spa
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem