Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66156
Título
Cycles in Leavitt path algebras by means of idempotents
Año del Documento
2015
Editorial
De Gruyter
Descripción
Producción Científica
Documento Fuente
Forum Mathematicum, 2015, vol. 27, no. 1, p. 601-633.
Resumen
We characterize, in terms of its idempotents, the Leavitt path algebras of an arbitrary graph that satisfies Condition (L) or Condition (NE). In the latter case, we also provide the structure of such algebras. Dual graph techniques are considered and demonstrated to be useful in the approach of the study of Leavitt path algebras of arbitrary graphs. A refining of the so-called Reduction Theorem is achieved and is used to prove that I(Pc(E)), the ideal of the vertices which are base of cycles without exits of the graph E, a construction with a clear parallelism to the socle, is a ring isomorphism invariant for arbitrary Leavitt path algebras. We also determine its structure in any case.
Materias (normalizadas)
Matemáticas
Materias Unesco
1201.05 Campos, Anillos, Álgebras
Palabras Clave
Álgebras de caminos de Leavitt, Álgebras de grafo, grafo dual
ISSN
0933-7741
Revisión por pares
SI
Patrocinador
Este trabajo forma parte de los proyectos de investigación: MEC-FEDER MTM2007-60333 y MTM2010-15223, y de los regionales FQM-336 y FQM-02467 de la Junta de Andalucía.
Version del Editor
Propietario de los Derechos
© 2015 by De Gruyter
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem