Mostrar el registro sencillo del ítem

dc.contributor.authorBrox López, José Ramón
dc.contributor.authorFernández López, Antonio
dc.contributor.authorGómez Lozano, Miguel
dc.date.accessioned2024-02-12T17:10:09Z
dc.date.available2024-02-12T17:10:09Z
dc.date.issued2017
dc.identifier.citationJournal of Lie Theory, 2017, vol. 27, no. 1, p. 283-296es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/66183
dc.descriptionProducción Científicaes
dc.description.abstractLet L be a Lie algebra over a field F of characteristic zero or p > 3 . An element c ∈ L is called Clifford if adc^3 = 0 and its associated Jordan algebra Lc is the Jordan algebra F ⊕ X defined by a symmetric bilinear form on a vector space X over F . In this paper we prove the following result: Let R be a centrally closed prime ring R of characteristic zero or p > 3 with involution ∗ and let c ∈ Skew(R, ∗) be such that c^3 = 0 , c^2 != 0 and c^2kc = ckc^2 for all k ∈ Skew(R, ∗) . Then c is a Clifford element of the Lie algebra Skew(R, ∗) .es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherHeldermann Verlages
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectMatemáticases
dc.subject.classificationAnillos primos, Anillos con involución, Álgebras de Lie, elementos Jordanes
dc.titleClifford elements in Lie algebrases
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderCopyright Heldermann Verlag 2017es
dc.relation.publisherversionhttps://www.heldermann.de/JLT/JLT27/JLT271/jlt27016.htmes
dc.identifier.publicationfirstpage283es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage296es
dc.identifier.publicationtitleJournal of Lie Theoryes
dc.identifier.publicationvolume27es
dc.peerreviewedSIes
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco1201.05 Campos, Anillos, Álgebrases
dc.subject.unesco1201.09 Álgebra de Liees
dc.subject.unesco1201.12 Álgebras no Asociativases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem