Mostrar el registro sencillo del ítem

dc.contributor.authorBenifa, J. V. Bibal
dc.contributor.authorChola, Channabasava
dc.contributor.authorMuaad, Abdullah Y.
dc.contributor.authorHayat, Mohd Ammar Bin
dc.contributor.authorBin Heyat, Md Belal
dc.contributor.authorMehrotra, Rajat
dc.contributor.authorAkhtar, Faijan
dc.contributor.authorHussein, Hany S.
dc.contributor.authorRamírez Vargas, Debora Libertad
dc.contributor.authorKuc Castilla, Ángel
dc.contributor.authorTorre Díez, Isabel de la 
dc.contributor.authorKhan, Salabat
dc.date.accessioned2024-03-04T12:10:51Z
dc.date.available2024-03-04T12:10:51Z
dc.date.issued2023
dc.identifier.citationSensors, 2023, Vol. 23, Nº. 13, 6090es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/66511
dc.descriptionProducción Científicaes
dc.description.abstractA new artificial intelligence-based approach is proposed by developing a deep learning (DL) model for identifying the people who violate the face mask protocol in public places. To achieve this goal, a private dataset was created, including different face images with and without masks. The proposed model was trained to detect face masks from real-time surveillance videos. The proposed face mask detection (FMDNet) model achieved a promising detection of 99.0% in terms of accuracy for identifying violations (no face mask) in public places. The model presented a better detection capability compared to other recent DL models such as FSA-Net, MobileNet V2, and ResNet by 24.03%, 5.0%, and 24.10%, respectively. Meanwhile, the model is lightweight and had a confidence score of 99.0% in a resource-constrained environment. The model can perform the detection task in real-time environments at 41.72 frames per second (FPS). Thus, the developed model can be applicable and useful for governments to maintain the rules of the SOP protocol.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectArtificial intelligencees
dc.subjectCOVID-19es
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectMaskses
dc.subjectMascarillases
dc.subjectPandemicses
dc.subjectPandemiases
dc.subjectSARS-CoV-2es
dc.subjectElectronic surveillancees
dc.subjectVigilancia electrónicaes
dc.subjectPublic healthes
dc.subjectMedicinees
dc.subjectPublic healthes
dc.subjectElectronic data processinges
dc.subjectProcesamiento de datoses
dc.titleFMDNet: An efficient system for face mask detection based on lightweight model during COVID-19 pandemic in public areases
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/s23136090es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/23/13/6090es
dc.identifier.publicationfirstpage6090es
dc.identifier.publicationissue13es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume23es
dc.peerreviewedSIes
dc.description.projectUniversidad King Khalid - (Project RGP.2/162/44)es
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco3212 Salud Publicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem