Mostrar el registro sencillo del ítem
dc.contributor.author | Benifa, J. V. Bibal | |
dc.contributor.author | Chola, Channabasava | |
dc.contributor.author | Muaad, Abdullah Y. | |
dc.contributor.author | Hayat, Mohd Ammar Bin | |
dc.contributor.author | Bin Heyat, Md Belal | |
dc.contributor.author | Mehrotra, Rajat | |
dc.contributor.author | Akhtar, Faijan | |
dc.contributor.author | Hussein, Hany S. | |
dc.contributor.author | Ramírez Vargas, Debora Libertad | |
dc.contributor.author | Kuc Castilla, Ángel | |
dc.contributor.author | Torre Díez, Isabel de la | |
dc.contributor.author | Khan, Salabat | |
dc.date.accessioned | 2024-03-04T12:10:51Z | |
dc.date.available | 2024-03-04T12:10:51Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Sensors, 2023, Vol. 23, Nº. 13, 6090 | es |
dc.identifier.issn | 1424-8220 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/66511 | |
dc.description | Producción Científica | es |
dc.description.abstract | A new artificial intelligence-based approach is proposed by developing a deep learning (DL) model for identifying the people who violate the face mask protocol in public places. To achieve this goal, a private dataset was created, including different face images with and without masks. The proposed model was trained to detect face masks from real-time surveillance videos. The proposed face mask detection (FMDNet) model achieved a promising detection of 99.0% in terms of accuracy for identifying violations (no face mask) in public places. The model presented a better detection capability compared to other recent DL models such as FSA-Net, MobileNet V2, and ResNet by 24.03%, 5.0%, and 24.10%, respectively. Meanwhile, the model is lightweight and had a confidence score of 99.0% in a resource-constrained environment. The model can perform the detection task in real-time environments at 41.72 frames per second (FPS). Thus, the developed model can be applicable and useful for governments to maintain the rules of the SOP protocol. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Artificial intelligence | es |
dc.subject | COVID-19 | es |
dc.subject | Machine learning | es |
dc.subject | Aprendizaje automático | es |
dc.subject | Masks | es |
dc.subject | Mascarillas | es |
dc.subject | Pandemics | es |
dc.subject | Pandemias | es |
dc.subject | SARS-CoV-2 | es |
dc.subject | Electronic surveillance | es |
dc.subject | Vigilancia electrónica | es |
dc.subject | Public health | es |
dc.subject | Medicine | es |
dc.subject | Public health | es |
dc.subject | Electronic data processing | es |
dc.subject | Procesamiento de datos | es |
dc.title | FMDNet: An efficient system for face mask detection based on lightweight model during COVID-19 pandemic in public areas | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The authors | es |
dc.identifier.doi | 10.3390/s23136090 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/23/13/6090 | es |
dc.identifier.publicationfirstpage | 6090 | es |
dc.identifier.publicationissue | 13 | es |
dc.identifier.publicationtitle | Sensors | es |
dc.identifier.publicationvolume | 23 | es |
dc.peerreviewed | SI | es |
dc.description.project | Universidad King Khalid - (Project RGP.2/162/44) | es |
dc.identifier.essn | 1424-8220 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
dc.subject.unesco | 32 Ciencias Médicas | es |
dc.subject.unesco | 3212 Salud Publica | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional