• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66613

    Título
    Micro-Fracture Detection in Photovoltaic Cells with Hardware-Constrained Devices and Computer Vision
    Autor
    Serrano Gutiérrez, JorgeAutoridad UVA Orcid
    Faasen, Booy Vitas
    Rosero-Montalvo, Paúl D.
    Año del Documento
    2024
    Documento Fuente
    arXiv:2403.05694
    Abstract
    Solar energy is rapidly becoming a robust renewable energy source to conventional finite resources such as fossil fuels. It is harvested using interconnected photovoltaic panels, typically built with crystalline silicon cells, i.e. semiconducting materials that convert effectively the solar radiation into electricity. However, crystalline silicon is fragile and vulnerable to cracking over time or in predictive maintenance tasks, which can lead to electric isolation of parts of the solar cell and even failure, thus affecting the panel performance and reducing electricity generation. This work aims to developing a system for detecting cell cracks in solar panels to anticipate and alaert of a potential failure of the photovoltaic system by using computer vision techniques. Three scenarios are defined where these techniques will bring value. In scenario A, images are taken manually and the system detecting failures in the solar cells is not subject to any computationa constraints. In scenario B, an Edge device is placed near the solar farm, able to make inferences. Finally, in scenario C, a small microcontroller is placed in a drone flying over the solar farm and making inferences about the solar cells' states. Three different architectures are found the most suitable solutions, one for each scenario, namely the InceptionV3 model, an EfficientNetB0 model shrunk into full integer quantization, and a customized CNN architechture built with VGG16 blocks.
    Revisión por pares
    NO
    DOI
    10.48550/arxiv.2403.05694
    Patrocinador
    MCINN
    NextGeneration
    FEDER
    MTED
    AEI
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66613
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Collections
    • DEP32 - Artículos de revista [284]
    Show full item record
    Files in this item
    Nombre:
    arxiv.pdf
    Tamaño:
    1.310Mb
    Formato:
    Adobe PDF
    Descripción:
    Preprint manuscript with figures, tables, and references
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10