• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Laboratorios de Investigación
    • Laboratorio de Procesado de Imagen (LPI)
    • LPI - Artículos de Revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Laboratorios de Investigación
    • Laboratorio de Procesado de Imagen (LPI)
    • LPI - Artículos de Revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66697

    Título
    Simplifying YOLOv5 for deployment in a real crop monitoring setting
    Autor
    Nnadozie, Emmanuel Chibuikem
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Iloanusi, Ogechukwu
    Ani, Ozoemena
    Alberola López, CarlosAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Multimedia Tools and Applications, 2023.
    Resumen
    Deep learning-based object detection models have become a preferred choice for crop detection tasks in crop monitoring activities due to their high accuracy and generalization capabilities. However, their high computational demand and large memory footprint pose a challenge for use on mobile embedded devices deployed in crop monitoring settings. Vari- ous approaches have been taken to minimize the computational cost and reduce the size of object detection models such as channel and layer pruning, detection head searching, back- bone optimization, etc. In this work, we approached computational lightening, model com- pression, and speed improvement by discarding one or more of the three detection scales of the YOLOv5 object detection model. Thus, we derived up to five separate fast and light models, each with only one or two detection scales. To evaluate the new models for a real crop monitoring use case, the models were deployed on NVIDIA Jetson nano and NVIDIA Jetson Orin devices. The new models achieved up to 21.4% reduction in giga floating-point operations per second (GFLOPS), 31.9% reduction in number of parameters, 30.8% reduc- tion in model size, 28.1% increase in inference speed, with only a small average accuracy drop of 3.6%. These new models are suitable for crop detection tasks since the crops are usually of similar sizes due to the high likelihood of being in the same growth stage, thus, making it sufficient to detect the crops with just one or two detection scales.
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Object detection
    Model simplification
    Crop monitoring
    YOLOv5
    Deep learning
    ISSN
    1380-7501
    Revisión por pares
    SI
    DOI
    10.1007/s11042-023-17435-x
    Patrocinador
    Tertiary Education Trust Fund - TETFUND NRF 2020 with grant number TETF/ES/DR&D-CE/NRF2020/SETI/88/ VOL.1
    Agencia Estatal de Investigación (grant PID2020-115339RB-I00 and CPP2021-008880)
    European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no.101008297
    Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/101008297
    Version del Editor
    https://link.springer.com/article/10.1007/s11042-023-17435-x
    Propietario de los Derechos
    © 2023 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66697
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • LPI - Artículos de Revista [9]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Simplifying-YOLOv5-for-deployment.pdf
    Tamaño:
    1.688Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10