Mostrar el registro sencillo del ítem

dc.contributor.authorKhan, Arooj
dc.contributor.authorShafi, Imran
dc.contributor.authorKhawaja, Sajid Gul
dc.contributor.authorTorre Díez, Isabel de la 
dc.contributor.authorLópez Flores, Miguel Angel
dc.contributor.authorCastañedo Galvlán, Juan
dc.contributor.authorAshraf, Imran
dc.date.accessioned2024-03-15T12:55:58Z
dc.date.available2024-03-15T12:55:58Z
dc.date.issued2023
dc.identifier.citationSensors, 2023, Vol. 23, Nº. 18, 7710es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/66743
dc.descriptionProducción Científicaes
dc.description.abstractAdaptive equalization is crucial in mitigating distortions and compensating for frequency response variations in communication systems. It aims to enhance signal quality by adjusting the characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the optimization capabilities of PSO further to improve the equalization performance. This paper provides a comprehensive study of the issues and challenges of adaptive filtering by comparing different variants of PSO and analyzing the performance by combining PSO with other optimization algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often suffer from high computational complexity and slow convergence rates, limiting their effectiveness in solving complex optimization problems. To address these limitations, this paper proposes a set of techniques aimed at reducing the complexity and accelerating the convergence of PSO.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAdaptive filterses
dc.subjectFiltros adaptativoses
dc.subjectSwarm intelligencees
dc.subjectMathematical optimizationes
dc.subjectOptimización matemáticaes
dc.subjectArtificial intelligencees
dc.subjectBit error ratees
dc.subjectSignal processinges
dc.subjectTratamiento de señales
dc.subjectInformation technologyes
dc.subjectTecnología de la informaciónes
dc.titleAdaptive filtering: Issues, challenges, and best-fit solutions using particle swarm optimization variantses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/s23187710es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/23/18/7710es
dc.identifier.publicationfirstpage7710es
dc.identifier.publicationissue18es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume23es
dc.peerreviewedSIes
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco1203.17 Informáticaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem