• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66743

    Título
    Adaptive filtering: Issues, challenges, and best-fit solutions using particle swarm optimization variants
    Autor
    Khan, Arooj
    Shafi, Imran
    Khawaja, Sajid Gul
    Torre Díez, Isabel de laAutoridad UVA Orcid
    López Flores, Miguel Angel
    Castañedo Galvlán, Juan
    Ashraf, Imran
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2023, Vol. 23, Nº. 18, 7710
    Resumen
    Adaptive equalization is crucial in mitigating distortions and compensating for frequency response variations in communication systems. It aims to enhance signal quality by adjusting the characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the optimization capabilities of PSO further to improve the equalization performance. This paper provides a comprehensive study of the issues and challenges of adaptive filtering by comparing different variants of PSO and analyzing the performance by combining PSO with other optimization algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often suffer from high computational complexity and slow convergence rates, limiting their effectiveness in solving complex optimization problems. To address these limitations, this paper proposes a set of techniques aimed at reducing the complexity and accelerating the convergence of PSO.
    Materias (normalizadas)
    Adaptive filters
    Filtros adaptativos
    Swarm intelligence
    Mathematical optimization
    Optimización matemática
    Artificial intelligence
    Bit error rate
    Signal processing
    Tratamiento de señal
    Information technology
    Tecnología de la información
    Materias Unesco
    1203.04 Inteligencia Artificial
    1203.17 Informática
    ISSN
    1424-8220
    Revisión por pares
    SI
    DOI
    10.3390/s23187710
    Version del Editor
    https://www.mdpi.com/1424-8220/23/18/7710
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66743
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Adaptive-Filtering.pdf
    Tamaño:
    2.506Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10