• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66789

    Título
    Empowering lower limb disorder identification through PoseNet and artificial intelligence
    Autor
    Siddiqui, Hafeez Ur Rehman
    Saleem, Adil Ali
    Raza, Muhammad Amjad
    Gracia Villar, Santos
    Dzul López, Luis Alonso
    Torre Díez, Isabel de laAutoridad UVA Orcid
    Rustam, Furqan
    Dudley, Sandra
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Diagnostics, 2023, Vol. 13, Nº. 18, 2881
    Abstract
    A novel approach is presented in this study for the classification of lower limb disorders, with a specific emphasis on the knee, hip, and ankle. The research employs gait analysis and the extraction of PoseNet features from video data in order to effectively identify and categorize these disorders. The PoseNet algorithm facilitates the extraction of key body joint movements and positions from videos in a non-invasive and user-friendly manner, thereby offering a comprehensive representation of lower limb movements. The features that are extracted are subsequently standardized and employed as inputs for a range of machine learning algorithms, such as Random Forest, Extra Tree Classifier, Multilayer Perceptron, Artificial Neural Networks, and Convolutional Neural Networks. The models undergo training and testing processes using a dataset consisting of 174 real patients and normal individuals collected at the Tehsil Headquarter Hospital Sadiq Abad. The evaluation of their performance is conducted through the utilization of K-fold cross-validation. The findings exhibit a notable level of accuracy and precision in the classification of various lower limb disorders. Notably, the Artificial Neural Networks model achieves the highest accuracy rate of 98.84%. The proposed methodology exhibits potential in enhancing the diagnosis and treatment planning of lower limb disorders. It presents a non-invasive and efficient method of analyzing gait patterns and identifying particular conditions.
    Materias (normalizadas)
    Extremidades inferiores - Enfermedades
    Leg - Diseases
    Locomoción humana
    Marcha (Ejercicio)
    Biomedical engineering
    Biomechanics
    Clinical biochemistry
    Bioquímica clínica
    Machine learning
    Aprendizaje automático
    Neural networks (Computer science)
    Redes neuronales (Informática)
    Artificial intelligence
    Materias Unesco
    1203.17 Informática
    1203.04 Inteligencia Artificial
    32 Ciencias Médicas
    2406.04 Biomecánica
    ISSN
    2075-4418
    Revisión por pares
    SI
    DOI
    10.3390/diagnostics13182881
    Version del Editor
    https://www.mdpi.com/2075-4418/13/18/2881
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66789
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    Empowering-Lower-Limb-Disorder-Identification.pdf
    Tamaño:
    684.0Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10