• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66797

    Título
    Controlling doping profiles of silicon nanowires for quantum computing and photovoltaics using micro-raman spectroscopy
    Autor
    Serrano Gutiérrez, JorgeAutoridad UVA Orcid
    Hinojosa Chasiquiza, Vanessa GiselleAutoridad UVA
    Mediavilla Martínez, IreneAutoridad UVA Orcid
    Jiménez López, Juan IgnacioAutoridad UVA Orcid
    Bricio, David
    Pérez Murano, Francesc
    Bausells, Joan
    Antoja Lleonart, Jordi
    Llobet, Jordi
    Bassani, Franck
    Baron, Thierry
    Bassem, Salem
    Congreso
    Nanoscience Summer School @ Yachay 2023
    Año del Documento
    2023
    Editorial
    Acta Microscopica
    Descripción Física
    2 p
    Descripción
    Producción Científica
    Documento Fuente
    Nanoscience Summer School @ Yachay 2023, Puerto Ayora, Galapagos 23th-29th April 2023
    Resumo
    Silicon technology has been the cornerstone for the advance of the current age of information since the inception of the first transistor, due to an exponential development of microelectronics and chip miniaturization. Based on this success, some of the emerging technologies in photovoltaics and quantum computing are being developed using silicon nanowires as a fundamental building block. In the case of photovoltaics, p-n axial and core-shell junctions in Si nanowires allow the integration of silicon technology with other materials and thus a potential larger solar cell efficiency [1]. In quantum computing, silicon nanowires serve as one of the semiconducting platforms for qubit development by controlling the electron spin levels using a tailored selected doping and voltage in gates that split the nanowire into different quantum dots [2]. In both scenarios it is of paramount importance to control several key parameters, among them the dopant concentration in the nanowire, the stress, and the concentration of defects. They can all affect the operation of the corresponding device and result in critical failure or lack of reliability. Accessing these parameters with nanoscale resolution has been a challenge for spectroscopic techniques due to the diffraction limit of currently widespread optical spectroscopy. We present here a characterization using micro-Raman imaging and tip-enhanced Raman spectroscopy (TERS) that shows the potential of these techniques to determine the doping profile of silicon nanowires in both p-n junctions and silicon nanostructures for qubits, and to distinguish doping effects from others such as the presence of strain, crystal grains, and defects. High dopant concentrations lead to Fano asymmetric line shape of the Raman spectrum of silicon with an asymmetry parameter proportional to the dopant concentration and character – p- or n-type doping [3]. Confinement of the electric field due to the nanoscale diameter of the nanowires results in an enhancement of the Raman signal that yields higher resolution than that expected without this antenna effect. This enhancement allows us to employ micro-Raman spectroscopy successfully to distinguish several of the above mentioned effects in nanostructures. In the case of p-n axial junctions in silicon nanowires, we observe an asymmetry with higher spectral weight in the low and high energy side for p-type and n-type doping, respectively, being the effect more pronounced in the case of p-type doping. This effect is more significant for doping concentrations above 1017 cm-3. In the case of nanostructured silicon for qubits we observe residual strain and crystallite grain boundaries close to the nanowire, tentatively attributed to the presence of We analyze the Raman spectra employing several asymmetric functions and compare the results obtained in nanowires with those reported in the literature and achieved in bulk silicon as a function of doping. Finally, we employ TERS to reach nanoscale spatial resolution and compare the accuracy and limitations of micro-Raman in the determination of the doping profile.
    Palabras Clave
    qubits, semiconductor, silicon, doping, Raman
    Patrocinador
    AEI
    MICINN
    TED - MTED
    NextGeneration
    Version del Editor
    https://acta-microscopica.org/acta/article/view/645/575
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66797
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP32 - Comunicaciones a congresos, conferencias, etc. [56]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Serrano 2023 Acta Microscopica 32 8-9.pdf
    Tamaño:
    1.060Mb
    Formato:
    Adobe PDF
    Descripción:
    Conference abstract
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10