• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66922

    Título
    La inteligencia artificial como herramienta para la detección de patrones de inmunodeficiencia en el lupus eritematoso sistémico
    Autor
    Usátegui Martín, IciarAutoridad UVA
    Director o Tutor
    Pérez Castrillon, José LuisAutoridad UVA
    Mateo Sotos, Jorge
    Barbado Ajo, María JuliaAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de DoctoradoAutoridad UVA
    Año del Documento
    2024
    Titulación
    Doctorado en Investigación en Ciencias de la Salud
    Resumo
    There is a link between autoimmune diseases such as SLE and primary immunodeficiency, with common genetic bases and shared clinical manifestations. Secondary immunodeficiency due to treatments is also a common problem. In addition, infections remain one of the main causes of early mortality in patients with SLE. Machine learning (ML), a branch of artificial intelligence, is capable of processing large amounts of data and identifying patterns, which is why it has been applied in different medical areas. This study proposes an ML system to help diagnose patients with SLE and immunodeficiency traits. The sample was taken from the group of patients diagnosed with SLE and being monitored by the Systemic Autoimmune Diseases Unit of the Internal Medicine Service of the University Clinical Hospital of Valladolid. After analyzing its characteristics, it was concluded that it was a solid sample for the study, in which the traits of immunodeficiency and its infectious complications were a reality. The main predictors of immunodeficiency were: weight loss, mucous ulcers, anti-MS antibodies and concurrent dose of hydroxychloroquine, with previous exposure to rituximab or corticosteroids being of lower weight. The EXtreme Gradient Boosting (XGB) method was selected and implemented for its high performance and accuracy, which outperformed the following model by almost 5%, k- Nearest Neighbor (KNN). It should be noted that the proposed system also showed the area under the curve highest (AUC 90%). The present study shows how ML is a useful instrument to recognize and predict immunodeficiency traits in patients with SLE, highlighting the XGB method, so that it could be incorporated into clinical practice as a tool to support diagnosis and ultimately improve morbidity and quality of life of patients
     
    Existe un vínculo entre las enfermedades autoinmunes como el LES y la inmunodeficiencia primaria, con bases genéticas comunes y manifestaciones clínicas compartidas. Asimismo, la inmunodeficiencia secundaria por los tratamientos es un problema frecuente. Además, las infecciones se mantienen como una de las principales causas de mortalidad precoz en los pacientes con LES. El aprendizaje automático o “machine learning” (ML), rama de la inteligencia artificial, es capaz de procesar gran cantidad de datos e identificar patrones, por lo que se ha aplicado en diferentes áreas médicas. Este estudio propone un sistema de ML para ayudar a diagnosticar a los pacientes con LES y rasgos de inmunodeficiencia. Se tomó como muestra el grupo de pacientes diagnosticados de LES y en seguimiento por la Unidad de Enfermedades Autoinmunes Sistémicas del Servicio de Medicina Interna del Hospital Clínico Universitario de Valladolid. Tras analizar sus características se concluyó que era una muestra sólida para el estudio, en la que los rasgos de inmunodeficiencia y sus complicaciones infecciosas eran una realidad. Se identificaron como principales características predictores de inmunodeficiencia: la pérdida de peso, las úlceras mucosas, los anticuerpos anti SM y la dosis concurrente de hidroxicloroquina, siendo de menor peso la exposición previa a rituximab o corticoides. Se seleccionó e implementó el método EXtreme Gradient Boosting (XGB) por su alto rendimiento y precisión, que superó casi en un5% al siguiente modelo: k- Nearest Neighbor (KNN). Cabe señalar que el sistema propuesto mostró también el área bajo la curva más alto (AUC 90%). El presente estudio muestra cómo el ML es un instrumento útil para reconocer y predecir rasgos de inmunodeficiencia en pacientes con LES, destacando el método XGB, por lo que se podría llegar a incorporar a la práctica clínica como herramienta de apoyo al diagnóstico y a la postre lograr mejorar la morbimotalidad y la calidad de vida de los pacientes.
    Materias (normalizadas)
    Lupus eritematoso sistémico
    Materias Unesco
    32 Ciencias Médicas
    Palabras Clave
    Systemic lupus erythematosus
    Lupus eritematosos sistémico
    Immunodeficiency
    Inmunodeficiencia
    Artificial intelligence
    Inteligencia artificial
    Machine learning
    Aprendizaje automático
    Departamento
    Escuela de Doctorado
    DOI
    10.35376/10324/66922
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/66922
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • Tesis doctorales UVa [2388]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    TESIS-2290-240321
    Tamaño:
    3.392Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10