Mostrar el registro sencillo del ítem

dc.contributor.authorHoque, Jiabul
dc.contributor.authorIslam, Saiful
dc.contributor.authorUddin, Jia
dc.contributor.authorSamad, Abdus
dc.contributor.authorSainz de Abajo, Beatriz 
dc.contributor.authorRamírez Vargas, Débora Libertad
dc.contributor.authorAshraf, Imran
dc.date.accessioned2024-04-07T09:33:58Z
dc.date.available2024-04-07T09:33:58Z
dc.date.issued2024
dc.identifier.citationIEEE Access, Marzo 2024, vol. 12, p. 47768-47786.es
dc.identifier.issn2169-3536es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/67046
dc.descriptionProducción Científicaes
dc.description.abstractThe agricultural sector is more vulnerable to the adverse effects of climate change and excessive pesticide application, posing a significant risk to global food security. Accurately predicting crop yields is essential for mitigating these risks and providing information for sustainable agricultural practices. This research presents a novel crop yield prediction system utilizing a year’s worth of meteorological data, pesticide records, crop yield data, and machine learning techniques. We employed rigorous methods to gather, clean, and enhance data and then trained and evaluated three machine learning models: Gradient Boosting, K-Nearest Neighbors, and Multivariate Logistic Regression. We utilized the GridSearchCV method for hyper-parameter tweaking to identify the most suitable hyper-parameter throughout K-Fold cross-validation, aiming to improve the model’s performance by avoiding overfitting. The remarkable performance of the Gradient Boosting model, with an almost flawless coefficient of determination (R2) of 99.99%, demonstrates its promise for precise yield prediction. This research also examined the correlation between projected and actual crop yields and identified the ideal meteorological conditions. It paves the way for data-driven methods in sustainable agriculture and resource distribution, ultimately leading to a more secure future regarding food availability and robustness to climate change.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC.es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDeep learning modelses
dc.subject.classificationAgriculturees
dc.subject.classificationCrop yield predictiones
dc.subject.classificationMachine Learninges
dc.subject.classificationDeep learninges
dc.titleIncorporating meteorological data and pesticide information to forecast crop yields using machine learninges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder"© Todos los derechos reservados". Propietario de los derechos: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC.es
dc.identifier.doi10.1109/ACCESS.2024.3383309es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10485420es
dc.identifier.publicationfirstpage47768es
dc.identifier.publicationlastpage47786es
dc.identifier.publicationtitleIEEE Accesses
dc.identifier.publicationvolume12es
dc.peerreviewedSIes
dc.description.projectEuropean University of Atlantices
dc.identifier.essn2169-3536es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem