• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67210

    Título
    First steps on fan matrix condition monitoring and fault diagnosis using an array of digital MEMS microphones
    Autor
    Izquierdo Fuente, AlbertoAutoridad UVA Orcid
    Val Puente, Lara delAutoridad UVA Orcid
    Villacorta Calvo, Juan JoséAutoridad UVA Orcid
    Año del Documento
    2017
    Editorial
    ASA
    Documento Fuente
    Lara del Val, Alberto Izquierdo, Juan J. Villacorta, Luis Suárez, Marta Herráez; First steps on fan matrix condition monitoring and fault diagnosis using an array of digital MEMS microphones. Proc. Mtgs. Acoust. 25 June 2017; 30 (1): 030014.
    Résumé
    Condition monitoring and fault diagnosis of complex mechanical systems were based on vibration analysis in the last decades. The sensors which were employed in these methods needed to be in contact with the vibrant surfaces of the machines. This fact was an important limitation of the corresponding methodologies. In the last years, this problem is trying to be avoided by means of the analysis of the noise, i.e. the acoustic signals, which are directly related with the vibrant surfaces, instead of the vibrations themselves. Both, acoustic and vibrational signals can reveal information related with machinery operation conditions. Using arrays of digital MEMS (Micro-Electro-Mechanical Systems) microphones allows creating systems with a high number of sensors, without paying a high cost. This work has studied the use of acoustic images, obtained by an array with 64 MEMS microphones (8×8) inside a hemianechoic chamber, in order to detect, characterize and, eventually, identify failure conditions of a fan matrix. The acoustic images have been processed to extract different geometric parameters. Afterwards, these parameters have been used in classification algorithms, based on Support Vector Machines (SVM), in order to identify failures on the fans of the matrix
    ISSN
    1939-800X
    Revisión por pares
    SI
    DOI
    10.1121/2.0000656
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/67210
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    2017-1_First steps on fan matrix condition monitoring and fault diagnosis using an array of digital MEMS microphones.pdf
    Tamaño:
    3.337Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivs 3.0 UnportedExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivs 3.0 Unported

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10