Mostrar el registro sencillo del ítem

dc.contributor.authorCorrales Astorgano, Mario
dc.contributor.authorGonzález Ferreras, César 
dc.contributor.authorEscudero Mancebo, David 
dc.contributor.authorCardeñoso Payo, Valentín 
dc.date.accessioned2024-04-22T08:09:44Z
dc.date.available2024-04-22T08:09:44Z
dc.date.issued2023
dc.identifier.citationApplied Sciences, 2024, Vol. 14, Nº. 1, 293es
dc.identifier.issn2076-3417es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/67234
dc.descriptionProducción Científicaes
dc.description.abstractEvaluating prosodic quality poses unique challenges due to the intricate nature of prosody, which encompasses multiple form–function profiles. These challenges are more pronounced when analyzing the voices of individuals with Down syndrome (DS) due to increased variability. This paper introduces a procedure for selecting informative prosodic features based on both the disparity between human-rated DS productions and their divergence from the productions of typical users, utilizing a corpus constructed through a video game. Individual reports of five speakers with DS are created by comparing the selected features of each user with recordings of individuals without intellectual disabilities. The acquired features primarily relate to the temporal domain, reducing dependence on pitch detection algorithms, which encounter difficulties when dealing with pathological voices compared to typical ones. These individual reports can be instrumental in identifying specific issues for each speaker, assisting therapists in defining tailored training sessions based on the speaker’s profile.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDown syndromees
dc.subjectDown, Síndrome dees
dc.subjectMedical geneticses
dc.subjectGenéticaes
dc.subjectProsodyes
dc.subjectProsodiaes
dc.subjectSpeech processing systemses
dc.subjectSíntesis automática del hablaes
dc.subjectComputational linguisticses
dc.subjectTechnologyes
dc.subjectSciencees
dc.titleProsodic feature analysis for automatic speech assessment and individual report generation in people with Down syndromees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/app14010293es
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/14/1/293es
dc.identifier.publicationfirstpage293es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleApplied Scienceses
dc.identifier.publicationvolume14es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/10.13039/501100011033 y Fondo Europeo de Desarrollo Regional (FEDER) - (Project PID2021-126315OB-I00)es
dc.identifier.essn2076-3417es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco57 Lingüísticaes
dc.subject.unesco5701.04 Lingüística Informatizadaes
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem