Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67382
Título
Nutritional and lifestyle features in a Mediterranean cohort: An epidemiological instrument for categorizing metabotypes based on a computational algorithm
Autor
Año del Documento
2024
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Medicina, 2024, Vol. 60, Nº. 4, 610
Resumo
Background and Objectives: Modern classification and categorization of individuals’ health requires personalized variables such as nutrition, physical activity, lifestyle, and medical data through advanced analysis and clustering methods involving machine learning tools. The objective of this project was to categorize Mediterranean dwellers’ health factors and design metabotypes to provide personalized well-being in order to develop professional implementation tools in addition to characterizing nutritional and lifestyle features in such populations. Materials and Methods: A two-phase observational study was conducted by the Pharmacists Council to identify Spanish nutritional and lifestyle characteristics. Adults over 18 years of age completed questionnaires on general lifestyle habits, dietary patterns (FFQ, MEDAS-17 p), physical activity (IPAQ), quality of life (SF-12), and validated well-being indices (LS7, MEDLIFE, HHS, MHL). Subsequently, exploratory factor, clustering, and random forest analysis methods were conducted to objectively define the metabotypes considering population determinants. Results: A total of 46.4% of the sample (n = 5496) had moderate-to-high adherence to the Mediterranean diet (>8 points), while 71% of the participants declared that they had moderate physical activity. Almost half of the volunteers had a good self-perception of health (49.9%). Regarding lifestyle index, population LS7 showed a fair cardiovascular health status (7.9 ± 1.7), as well as moderate quality of life by MEDLIFE (9.3 ± 2.6) and MHL scores (2.4 ± 0.8). In addition, five metabotype models were developed based on 26 variables: Westernized Millennial (28.6%), healthy (25.1%), active Mediterranean (16.5%), dysmetabolic/pre-morbid (11.5%), and metabolically vulnerable/pro-morbid (18.3%). Conclusions: The support of tools related to precision nutrition and lifestyle integrates well-being characteristics and contributes to reducing the impact of unhealthy lifestyle habits with practical implications for primary care. Combining lifestyle, metabolic, and quality of life traits will facilitate personalized precision interventions and the implementation of targeted public health policies.
Materias (normalizadas)
Metabotype
Lifestyles assessment
Healthcare
Precision nutrition
Machine learning
Cluster
Materias Unesco
32 Ciencias Médicas
3212 Salud Publica
3206 Ciencias de la Nutrición
1203.17 Informática
ISSN
1648-9144
Revisión por pares
SI
Patrocinador
Instituto de Salud Carlos III, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) y Fondo Europeo de Desarrollo Regional (FEDER) - (grants CB12/03/30038; CB22/03/00068; CB12/03/30002)
Version del Editor
Propietario de los Derechos
© 2024 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional