Mostrar el registro sencillo del ítem
dc.contributor.author | Es-Sabery, Fatima | |
dc.contributor.author | Hair, Abdellatif | |
dc.contributor.author | Qadir, Junaid | |
dc.contributor.author | Sainz de Abajo, Beatriz | |
dc.contributor.author | García Zapirain, Begoña | |
dc.contributor.author | Torre Díez, Isabel de la | |
dc.date.accessioned | 2024-06-01T18:47:54Z | |
dc.date.available | 2024-06-01T18:47:54Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | IEEE Access, Enero 2021, vol. 9, p. 17943-17985. | es |
dc.identifier.issn | 2169-3536 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/67945 | |
dc.description | Producción Científica | es |
dc.description.abstract | At present, with the growing number of Web 2.0 platforms such as Instagram, Facebook, and Twitter, users honestly communicate their opinions and ideas about events, services, and products. Owing to this rise in the number of social platforms and their extensive use by people, enormous amounts of data are produced hourly. However, sentiment analysis or opinion mining is considered as a useful tool that aims to extract the emotion and attitude from the user-posted data on social media platforms by using different computational methods to linguistic terms and various Natural Language Processing (NLP). Therefore, enhancing text sentiment classification accuracy has become feasible, and an interesting research area for many community researchers. In this study, a new Fuzzy Deep Learning Classifier (FDLC) is suggested for improving the performance of data-sentiment classification. Our proposed FDLC integrates Convolutional Neural Network (CNN) to build an effective automatic process for extracting the features from collected unstructured data and Feedforward Neural Network (FFNN) to compute both positive and negative sentimental scores. Then, we used the Mamdani Fuzzy System (MFS) as a fuzzy classifier to classify the outcomes of the two used deep (CNN+FFNN) learning models in three classes, which are: Neutral, Negative, and Positive. Also, to prevent the long execution time taking by our hybrid proposed FDLC, we have implemented our proposal under the Hadoop cluster. An experimental comparative study between our FDLC and some other suggestions from the literature is performed to demonstrate our offered classifier’s effectiveness. The empirical result proved that our FDLC performs better than other classifiers in terms of true positive rate, true negative rate, false positive rate, false negative rate, error rate, precision, classification rate, kappa statistic, F1-score and time consumption, complexity, convergence, and stability. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Deep learning | es |
dc.subject.classification | Convolutional neural network | es |
dc.subject.classification | Sentiment analysis | es |
dc.title | Sentence-level classification using parallel fuzzy deep learning classifier | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | "© Todos los derechos reservados". Propietario de los derechos: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. | es |
dc.identifier.doi | 10.1109/ACCESS.2021.3053917 | es |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9333555 | es |
dc.identifier.publicationfirstpage | 17943 | es |
dc.identifier.publicationlastpage | 17985 | es |
dc.identifier.publicationtitle | IEEE Access | es |
dc.identifier.publicationvolume | 9 | es |
dc.peerreviewed | SI | es |
dc.description.project | Este trabajo ha sido financiado por el grupo de investigación eVida, de la Universidad de Deusto, como parte del proyecto de investigación: Grant IT 905-16. | es |
dc.identifier.essn | 2169-3536 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional