Mostrar el registro sencillo del ítem

dc.contributor.authorEs-Sabery, Fatima
dc.contributor.authorHair, Abdellatif
dc.contributor.authorQadir, Junaid
dc.contributor.authorSainz de Abajo, Beatriz 
dc.contributor.authorGarcía Zapirain, Begoña
dc.contributor.authorTorre Díez, Isabel de la 
dc.date.accessioned2024-06-01T18:47:54Z
dc.date.available2024-06-01T18:47:54Z
dc.date.issued2021
dc.identifier.citationIEEE Access, Enero 2021, vol. 9, p. 17943-17985.es
dc.identifier.issn2169-3536es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/67945
dc.descriptionProducción Científicaes
dc.description.abstractAt present, with the growing number of Web 2.0 platforms such as Instagram, Facebook, and Twitter, users honestly communicate their opinions and ideas about events, services, and products. Owing to this rise in the number of social platforms and their extensive use by people, enormous amounts of data are produced hourly. However, sentiment analysis or opinion mining is considered as a useful tool that aims to extract the emotion and attitude from the user-posted data on social media platforms by using different computational methods to linguistic terms and various Natural Language Processing (NLP). Therefore, enhancing text sentiment classification accuracy has become feasible, and an interesting research area for many community researchers. In this study, a new Fuzzy Deep Learning Classifier (FDLC) is suggested for improving the performance of data-sentiment classification. Our proposed FDLC integrates Convolutional Neural Network (CNN) to build an effective automatic process for extracting the features from collected unstructured data and Feedforward Neural Network (FFNN) to compute both positive and negative sentimental scores. Then, we used the Mamdani Fuzzy System (MFS) as a fuzzy classifier to classify the outcomes of the two used deep (CNN+FFNN) learning models in three classes, which are: Neutral, Negative, and Positive. Also, to prevent the long execution time taking by our hybrid proposed FDLC, we have implemented our proposal under the Hadoop cluster. An experimental comparative study between our FDLC and some other suggestions from the literature is performed to demonstrate our offered classifier’s effectiveness. The empirical result proved that our FDLC performs better than other classifiers in terms of true positive rate, true negative rate, false positive rate, false negative rate, error rate, precision, classification rate, kappa statistic, F1-score and time consumption, complexity, convergence, and stability.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC.es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationDeep learninges
dc.subject.classificationConvolutional neural networkes
dc.subject.classificationSentiment analysises
dc.titleSentence-level classification using parallel fuzzy deep learning classifieres
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder"© Todos los derechos reservados". Propietario de los derechos: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC.es
dc.identifier.doi10.1109/ACCESS.2021.3053917es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9333555es
dc.identifier.publicationfirstpage17943es
dc.identifier.publicationlastpage17985es
dc.identifier.publicationtitleIEEE Accesses
dc.identifier.publicationvolume9es
dc.peerreviewedSIes
dc.description.projectEste trabajo ha sido financiado por el grupo de investigación eVida, de la Universidad de Deusto, como parte del proyecto de investigación: Grant IT 905-16.es
dc.identifier.essn2169-3536es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem