Mostrar el registro sencillo del ítem

dc.contributor.authorEl Bouharrouti, Nada
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.contributor.authorBelahcen, Anouar
dc.date.accessioned2024-06-05T11:35:20Z
dc.date.available2024-06-05T11:35:20Z
dc.date.issued2023
dc.identifier.citationMachines, 2024, Vol. 12, Nº. 1, 17es
dc.identifier.issn2075-1702es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/67988
dc.descriptionProducción Científicaes
dc.description.abstractVibration signals carry important information about the health state of a ball bearing and have proven their efficiency in training machine learning models for fault diagnosis. However, the sampling rate and frequency resolution of these acquired signals play a key role in the detection analysis. Industrial organizations often seek cost-effective and qualitative measurements, while reducing sensor resolution to optimize their resource allocation. This paper compares the performance of supervised learning classifiers for the fault detection of bearing faults in induction machines using vibration signals sampled at various frequencies. Three classes of algorithms are tested: linear models, tree-based models, and neural networks. These algorithms are trained and evaluated on vibration data collected experimentally and then downsampled to various intermediate levels of sampling, from 48 kHz to 1 kHz, using a fractional downsampling method. The study highlights the trade-off between fault detection accuracy and sampling frequency. It shows that, depending on the machine learning algorithm used, better training accuracies are not systematically achieved when training with vibration signals sampled at a relatively high frequency.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMachinery - Monitoringes
dc.subjectSistema de Monitoreoes
dc.subjectSampling (Statistics)es
dc.subjectMechanical engineeringes
dc.subjectElectrical engineeringes
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectVibrationes
dc.titleMulti-rate vibration signal analysis for bearing fault detection in induction machines using supervised learning classifierses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/machines12010017es
dc.relation.publisherversionhttps://www.mdpi.com/2075-1702/12/1/17es
dc.identifier.publicationfirstpage17es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleMachineses
dc.identifier.publicationvolume12es
dc.peerreviewedSIes
dc.description.projectConsejo de Investigación de Finlandia - ( grants 346438 and 330747)es
dc.identifier.essn2075-1702es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1209.10 Teoría y Técnicas de Muestreoes
dc.subject.unesco3313 Tecnología E Ingeniería Mecánicases
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases
dc.subject.unesco2201.11 Vibracioneses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem