Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67988
Título
Multi-rate vibration signal analysis for bearing fault detection in induction machines using supervised learning classifiers
Año del Documento
2023
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Machines, 2024, Vol. 12, Nº. 1, 17
Resumen
Vibration signals carry important information about the health state of a ball bearing and have proven their efficiency in training machine learning models for fault diagnosis. However, the sampling rate and frequency resolution of these acquired signals play a key role in the detection analysis. Industrial organizations often seek cost-effective and qualitative measurements, while reducing sensor resolution to optimize their resource allocation. This paper compares the performance of supervised learning classifiers for the fault detection of bearing faults in induction machines using vibration signals sampled at various frequencies. Three classes of algorithms are tested: linear models, tree-based models, and neural networks. These algorithms are trained and evaluated on vibration data collected experimentally and then downsampled to various intermediate levels of sampling, from 48 kHz to 1 kHz, using a fractional downsampling method. The study highlights the trade-off between fault detection accuracy and sampling frequency. It shows that, depending on the machine learning algorithm used, better training accuracies are not systematically achieved when training with vibration signals sampled at a relatively high frequency.
Materias (normalizadas)
Machinery - Monitoring
Sistema de Monitoreo
Sampling (Statistics)
Mechanical engineering
Electrical engineering
Machine learning
Aprendizaje automático
Vibration
Materias Unesco
1209.10 Teoría y Técnicas de Muestreo
3313 Tecnología E Ingeniería Mecánicas
3306 Ingeniería y Tecnología Eléctricas
2201.11 Vibraciones
ISSN
2075-1702
Revisión por pares
SI
Patrocinador
Consejo de Investigación de Finlandia - ( grants 346438 and 330747)
Version del Editor
Propietario de los Derechos
© 2023 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional