Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Ales, Emilio
dc.contributor.authorMenchón Lara, Rosa María
dc.contributor.authorSimmross Wattenberg, Federico Jesús 
dc.contributor.authorRodríguez Cayetano, Manuel 
dc.contributor.authorMartín Fernández, Marcos Antonio 
dc.contributor.authorAlberola López, Carlos 
dc.date.accessioned2024-06-11T08:58:18Z
dc.date.available2024-06-11T08:58:18Z
dc.date.issued2024
dc.identifier.citationSensors, 2024, Vol. 24, Nº. 4, 1313es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68076
dc.descriptionProducción Científicaes
dc.description.abstractCardiac CINE, a form of dynamic cardiac MRI, is indispensable in the diagnosis and treatment of heart conditions, offering detailed visualization essential for the early detection of cardiac diseases. As the demand for higher-resolution images increases, so does the volume of data requiring processing, presenting significant computational challenges that can impede the efficiency of diagnostic imaging. Our research presents an approach that takes advantage of the computational power of multiple Graphics Processing Units (GPUs) to address these challenges. GPUs are devices capable of performing large volumes of computations in a short period, and have significantly improved the cardiac MRI reconstruction process, allowing images to be produced faster. The innovation of our work resides in utilizing a multi-device system capable of processing the substantial data volumes demanded by high-resolution, five-dimensional cardiac MRI. This system surpasses the memory capacity limitations of single GPUs by partitioning large datasets into smaller, manageable segments for parallel processing, thereby preserving image integrity and accelerating reconstruction times. Utilizing OpenCL technology, our system offers adaptability and cross-platform functionality, ensuring wider applicability. The proposed multi-device approach offers an advancement in medical imaging, accelerating the reconstruction process and facilitating faster and more effective cardiac health assessment.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCardiologyes
dc.subjectMagnetic resonancees
dc.subjectResonancia magnéticaes
dc.subjectCardiac imaginges
dc.subjectHeart - Magnetic resonance imaginges
dc.subjectCorazón - Enfermedades - Tratamientoes
dc.subjectHeart - Diseases - Treatmentes
dc.subjectComputerses
dc.subjectGraphics processing unitses
dc.subjectImage processinges
dc.subjectImágenes, Tratamiento de lases
dc.subjectCompressed sensing (Telecommunication)es
dc.subjectMedical technology
dc.titleMulti-device parallel MRI reconstruction: Efficient partitioning for undersampled 5D cardiac CINEes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The authorses
dc.identifier.doi10.3390/s24041313es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/24/4/1313es
dc.identifier.publicationfirstpage1313es
dc.identifier.publicationissue4es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume24es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Comercio y Empresa (MINECO) - (grants TEC2017-82408-R, PRE2018- 086922)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigacion (AEI) - (grants PID2020-115339RB-I00 and TED2021- 130090B-I00 )es
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco3205.01 Cardiologíaes
dc.subject.unesco3304 Tecnología de Los Ordenadoreses
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses
dc.subject.unesco3314 Tecnología Médica


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem