Mostrar el registro sencillo del ítem
dc.contributor.author | Barkatou, Moulay | |
dc.contributor.author | Carnicero, Félix Álvaro | |
dc.contributor.author | Sanz Sánchez, Fernando | |
dc.date.accessioned | 2024-06-13T20:48:35Z | |
dc.date.available | 2024-06-13T20:48:35Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Electronic Journal of Di erential Equations, Vol. 2023, No. 79, pp. 1-23. | es |
dc.identifier.issn | 1072-6691 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/68105 | |
dc.description.abstract | We establish a version of Turrittin's result on normal forms of linear systems of meromorphic ODEs when the base eld K is real and closed. Both the proposed normal forms and the transformations used have coe cients in K. Our motivation comes from applications to the study of trajectories of real analytic vector elds (already treated in the literature in dimension three). For the sake of clarity and completeness, we rst review Turrittin's theorem in the case of an algebraically closed base eld. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Linear systems of meromorphic ODE; formal normal form; Turrittin's theorem | es |
dc.title | Turrittin's normal forms for linear systems of meromorphic ODEs over the real field | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.58997/ejde.2023.79 | es |
dc.identifier.publicationfirstpage | 1 | es |
dc.identifier.publicationlastpage | 23 | es |
dc.identifier.publicationtitle | Electronic Journal of Differential Equations | es |
dc.identifier.publicationvolume | 2023 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1072-6691 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional