Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68107
Título
Stable manifolds of biholomorphisms in Cn$\mathbb {C}^n$ asymptotic to formal curves
Año del Documento
2022
Editorial
Wiley
Documento Fuente
Proc. London Math. Soc. (3) 2022;125:277–317.
Abstract
Given a germ of biholomorphism 𝐹 ∈ Dif f (ℂ𝑛, 0) with a
formal invariant curve Γ such that the multiplier of the
restricted formal diffeomorphism 𝐹|Γ is a root of unity
or satisfies |(𝐹|Γ)′(0)| < 1, we prove that either Γ is contained
in the set of periodic points of 𝐹 or there exists a
finite family of stable manifolds of 𝐹 where all the orbits
are asymptotic toΓ andwhose union eventually contains
every orbit asymptotic to Γ. This result generalizes to the
case where Γ is a formal periodic curve.
ISSN
0024-6115
Revisión por pares
SI
Patrocinador
The first, second, and third authors were partially supported by Ministerio de Ciencia e Innovación, Spain, process MTM2016-77642-C2-1-P and PID2019-105621GB-I00
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
openAccess
Collections
Files in this item