Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68147
Título
Machine learning-based prediction of cattle activity using sensor-based data
Autor
Año del Documento
2024
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2024, Vol. 24, Nº. 10, 3157
Abstract
Livestock monitoring is a task traditionally carried out through direct observation by experienced caretakers. By analyzing its behavior, it is possible to predict to a certain degree events that require human action, such as calving. However, this continuous monitoring is in many cases not feasible. In this work, we propose, develop and evaluate the accuracy of intelligent algorithms that operate on data obtained by low-cost sensors to determine the state of the animal in the terms used by the caregivers (grazing, ruminating, walking, etc.). The best results have been obtained using aggregations and averages of the time series with support vector classifiers and tree-based ensembles, reaching accuracies of 57% for the general behavior problem (4 classes) and 85% for the standing behavior problem (2 classes). This is a preliminary step to the realization of event-specific predictions.
Materias (normalizadas)
Cattle
Ganado vacuno
Animal behavior
Animales - Hábitos y conducta
Extensive livestock
Animales - Cría y explotación
Machine learning
Aprendizaje automático
Monitoring
Sistema de Monitoreo
Wearable device
Detectors
Detectores
Technological innovations
Materias Unesco
5102.11 Ganadería
3104 Producción Animal
1203.25 Diseño de Sistemas Sensores
5306.02 Innovación Tecnológica
ISSN
1424-8220
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades, Centro para el Desarrollo Tecnológico y la Innovación (CDTI) y Fondo Europeo de Desarrollo Regional (FEDER)- (grant CIVEX IDI-20180355 and CIVEX IDI-20180354)
Version del Editor
Propietario de los Derechos
© 2024 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Atribución 4.0 Internacional