• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68165

    Título
    Multi-agent Reinforcement Learning based Multi-model Running Latency Optimization in Vehicular Edge Computing Paradigm
    Autor
    Li, Peisong
    Xiao, Ziren
    Wang, Xinheng
    Iqbal, Muddesar
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    IEEE
    Documento Fuente
    IEEE Systems Journal, 2024 (en prensa)
    Abstract
    With the advancement of edge computing, more and more intelligent applications are being deployed at the edge in proximity to end devices to provide in-vehicle services. However, the implementation of some complex services requires the collaboration of multiple AI models to handle and analyze various types of sensory data. In this context, the simultaneous scheduling and execution of multiple model inference tasks is an emerging scenario and faces many challenges. One of the major challenges is to reduce the completion time of time-sensitive services. In order to solve this problem, a multiagent reinforcement learning-based multi-model inference task scheduling method was proposed in this paper, with a newly designed reward function to jointly optimize the overall running time and load imbalance. Firstly, the Multi-agent Proximal Policy Optimization algorithm is utilized for designing the task scheduling method. Secondly, the designed method can generate near-optimal task scheduling decisions and then dynamically allocate inference tasks to different edge applications based on their status and task characteristics. Thirdly, one assessment index, Quality of Method, is defined and the proposed method is compared with the other five benchmark methods. Experimental results reveal that the proposed method can reduce the running time of multi-model inference by at least 25% or more, closing to the optimal solution.
    Revisión por pares
    SI
    Patrocinador
    This research received partial support from EU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 101008297. This article reflects only the authors’ view. The European Union Commission is not responsible for any use that may be made of the information it contains
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/68165
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    For_IEEE_System_Journal.pdf
    Tamaño:
    1.074Mb
    Formato:
    Adobe PDF
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10