Mostrar el registro sencillo del ítem
dc.contributor.author | López-Hernanz, Lorena | |
dc.contributor.author | Raissy, Jasmin | |
dc.contributor.author | Ribón, Javier | |
dc.contributor.author | Sanz-Sánchez, Fernando | |
dc.date.accessioned | 2024-06-21T08:54:40Z | |
dc.date.available | 2024-06-21T08:54:40Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | International Mathematics Research Notices, Vol. 2021, No. 17, pp. 12847–12887 | es |
dc.identifier.issn | 1073-7928 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/68172 | |
dc.description.abstract | Let F ∈ Diff (C2, 0) be a germ of a holomorphic diffeomorphism and let G be an invariant formal curve of F. Assume that the restricted diffeomorphism F|G is either hyperbolic attracting or rationally neutral non-periodic (these are the conditions that the diffeomorphism F|G should satisfy, if G were convergent, in order to have orbits converging to the origin). Then we prove that F has finitely many stable manifolds, either open domains or parabolic curves, consisting of and containing all converging orbits asymptotic to G. Our results generalize to the case where G is a formal periodic curve of F. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.title | Stable Manifolds of Two-dimensional Biholomorphisms Asymptotic to Formal Curves | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1093/imrn/rnz143 | es |
dc.identifier.publicationfirstpage | 12847 | es |
dc.identifier.publicationissue | 17 | es |
dc.identifier.publicationlastpage | 12887 | es |
dc.identifier.publicationtitle | International Mathematics Research Notices | es |
dc.identifier.publicationvolume | 2021 | es |
dc.peerreviewed | SI | es |
dc.description.project | First, third and fourth authors partially supported by Ministerio de Economía y Competitividad, Spain, process MTM2016-77642-C2-1-P; first and second authors, by MATHAmSud 2014 grant “Geometry and Dynamics of Holomorphic Foliations”; second author, by ANR project LAMBDA, ANR-13-BS01-0002. | es |
dc.identifier.essn | 1687-0247 | es |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |