Mostrar el registro sencillo del ítem
dc.contributor.author | Le Gal, Olivier | |
dc.contributor.author | Sanz, Fernando | |
dc.contributor.author | Speissegger, Patrick | |
dc.date.accessioned | 2024-06-21T09:34:41Z | |
dc.date.available | 2024-06-21T09:34:41Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 370, Number 3, March 2018, Pages 2211–2229 | es |
dc.identifier.issn | 0002-9947 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/68174 | |
dc.description.abstract | Let ξ be an analytic vector field at (R3, 0) and I be an analytically non-oscillatory integral pencil of ξ; i.e., I is a maximal family of analytically non-oscillatory trajectories of ξ at 0 all sharing the same iterated tangents. We prove that if I is interlaced, then for any trajectory Γ ∈ I, the expansion Ran,Γ of the structure Ran by Γ is model-complete, o-minimal and polynomially bounded. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Ordinary differential equations, o-minimal structures, multisummable series, Stokes phenomena. | es |
dc.title | Trajectories in interlaced integral pencils of 3-dimensional analytic vector fields are o-minimal | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1090/tran/7205 | es |
dc.identifier.publicationfirstpage | 2211 | es |
dc.identifier.publicationissue | 3 | es |
dc.identifier.publicationlastpage | 2229 | es |
dc.identifier.publicationtitle | Transactions of the American Mathematical Society | es |
dc.identifier.publicationvolume | 370 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1088-6850 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional