Mostrar el registro sencillo del ítem
dc.contributor.author | Rolin, J.-P. | |
dc.contributor.author | Sanz, F. | |
dc.contributor.author | Schäfke, R. | |
dc.date.accessioned | 2024-06-21T17:43:23Z | |
dc.date.available | 2024-06-21T17:43:23Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | Proc. London Math. Soc. (3) 95 (2007) 413–442 | es |
dc.identifier.issn | 0024-6115 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/68189 | |
dc.description.abstract | It is well known that the non-spiraling leaves of real analytic foliations of codimension 1 all belong to the same o-minimal structure. Naturally, the question arises of whether the same statement is true for non-oscillating trajectories of real analytic vector fields. We show, under certain assumptions, that such a trajectory generates an o-minimal and model-complete structure together with the analytic functions. The proof uses the asymptotic theory of irregular singular ordinary differential equations in order to establish a quasi-analyticity result from which the main theorem follows. As applications, we present an infinite family of o-minimal structures such that any two of them do not admit a common extension, and we construct a non-oscillating trajectory of a real analytic vector field in R5 that is not definable in any o-minimal extension of R. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | London Mathematical Society | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.title | Quasi-analytic solutions of analytic ordinary differential equations and o-minimal structures | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | London Mathematical Society | es |
dc.identifier.doi | 10.1112/plms/pdm016 | es |
dc.identifier.publicationfirstpage | 413 | es |
dc.identifier.publicationissue | 2 | es |
dc.identifier.publicationlastpage | 442 | es |
dc.identifier.publicationtitle | Proceedings of the London Mathematical Society | es |
dc.identifier.publicationvolume | 95 | es |
dc.peerreviewed | SI | es |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | es |