Mostrar el registro sencillo del ítem

dc.contributor.authorRolin, J.-P.
dc.contributor.authorSanz, F.
dc.contributor.authorSchäfke, R.
dc.date.accessioned2024-06-21T17:43:23Z
dc.date.available2024-06-21T17:43:23Z
dc.date.issued2007
dc.identifier.citationProc. London Math. Soc. (3) 95 (2007) 413–442es
dc.identifier.issn0024-6115es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68189
dc.description.abstractIt is well known that the non-spiraling leaves of real analytic foliations of codimension 1 all belong to the same o-minimal structure. Naturally, the question arises of whether the same statement is true for non-oscillating trajectories of real analytic vector fields. We show, under certain assumptions, that such a trajectory generates an o-minimal and model-complete structure together with the analytic functions. The proof uses the asymptotic theory of irregular singular ordinary differential equations in order to establish a quasi-analyticity result from which the main theorem follows. As applications, we present an infinite family of o-minimal structures such that any two of them do not admit a common extension, and we construct a non-oscillating trajectory of a real analytic vector field in R5 that is not definable in any o-minimal extension of R.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherLondon Mathematical Societyes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleQuasi-analytic solutions of analytic ordinary differential equations and o-minimal structureses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderLondon Mathematical Societyes
dc.identifier.doi10.1112/plms/pdm016es
dc.identifier.publicationfirstpage413es
dc.identifier.publicationissue2es
dc.identifier.publicationlastpage442es
dc.identifier.publicationtitleProceedings of the London Mathematical Societyes
dc.identifier.publicationvolume95es
dc.peerreviewedSIes
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem