Mostrar el registro sencillo del ítem

dc.contributor.authorSanz, Fernando
dc.date.accessioned2024-06-22T09:36:49Z
dc.date.available2024-06-22T09:36:49Z
dc.date.issued1998
dc.identifier.citationAnnales de l’institut Fourier, tome 48, no 4 (1998), p. 1045-1067es
dc.identifier.issn0373-0956es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68191
dc.description.abstractLet \gamma be an integral solution of an analytic real vector field defined in a neighbordhood of 0\in R3. Suppose that \gamma has a single limit point at 0. We say that \gamma is non oscillating if, for any analytic surface H, either \gamma is contained in H or \gamma cuts H only finitely many times. In this paper we give a sufficient condition for \gamma to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for the solutions of a gradient vector field 𝛻g f of an analytic function f of order 2 at 0, where g is an analytic riemannian metric.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherCentre Mersennees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationVector field - Gradient - Tangent - Oscillation - Blowing-up - Desingularization - Center manifoldes
dc.titleNon oscillating solutions of analytic gradient vector fieldses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.5802/aif.1648es
dc.identifier.publicationfirstpage1045es
dc.identifier.publicationissue4es
dc.identifier.publicationlastpage1067es
dc.identifier.publicationtitleAnnales de l’institut Fourieres
dc.identifier.publicationvolume48es
dc.peerreviewedSIes
dc.description.projectPartially supported by DGICYT; PB94-1124 and TMR; ERBFMRXCT96-0040es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem